题目描述

给定一个长度为n的正整数序列a[i],计算出有多少个i<j的数对,a[i]+a[j]为二的次幂,也就是说存在一个正整数x满足a[i]+a[j]==2^x。

输入

输入文件A.in。

第一行一个整数n。

第二行n个整数,其中第i个整数为a[i]。

输出

输出文件A.out。

一行一个整数表示数对的数量。

样例输入

4
7 3 2 1

样例输出

2

【样例输入2】

3
1 1 1

【样例输出2】

3

【数据范围】

对于 20% 数据 $ n \le 10^3 $

对于 50% 数据 $ n \le 5 \times 10^4 , 0 \le a_i \le 10^9 $

对于 100% 数据 $ n \le 10^6 , 0 \le a_i \le 10^9 $

这个题之前想枚举二的整次幂,然后二分查找判断来着....

于是代码长这样:

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#define lowbit(x) ( - x & x )
#define ll long long const int N = 1e6 + 5 ; int n,v[N];
ll ans;
ll mi[N]; inline int read(){
int x = 0 , f = 1 ;char ch = getchar () ;
while(ch < '0' || ch > '9'){if(ch == '-') f = - 1 ;ch = getchar () ;}
while( ch >= '0' && ch <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( ch ^ 48 ) ;ch = getchar () ;}
return f * x ;
} inline bool check ( int l , int r , int val ){
#define mid ( ( l + r ) >> 1 )
while( l <= r ){
if( v[mid] == val ) return true ;
if( v[mid] > val ) r = mid - 1 ;
if( v[mid] < val ) l = mid + 1 ;
}
#undef mid
return false ;
} int main(){
n = read () ;mi[0] = 1 ;
for(int i = 1 ; i <= 33 ; ++ i ) mi[i] = ( mi[i - 1] << 1 ) ;
for(int i = 1 ; i <= n ; ++ i ) v[i] = read () ;
std::sort( v + 1 , v + n + 1 );
for(int i = 1 ; i <= n ; ++ i ){
int dir = std::upper_bound( mi + 1 , mi + 33 + 1 , v[i] ) - mi ;
int tmp = mi[dir] - v[i];
if( check( i , n , tmp ) ) ++ ans ;
}
printf("%lld\n" , ans );
return 0;
}

显然这个做法会T到飞起!

那么我就想怎么消 $ log $ 然后旁边的 $ wqy \ 大\ 佬\ && zs \ 大\ 佬\ $ 告诉我可以用双指针来优化,做到消除 $ log $

然后我冥思苦想,终于和 \(DYJ\) 在一番激烈争论后确定了这题的双指针怎么搞,于是就AC了

具体思路也不怎么难,大体就是先排一遍序,然后枚举二的整次幂,双指针扫区间,统计答案

扫区间的时候,不断地根据单调性移动指针就好了

要特判一坨一样的值,因为扫到一坨一样的值是可以直接 \(\Theta(1)\) 算出来的,完全不必要去扫

于是,代码长这样:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cctype>
#define Noip2018RPINF return 0
#define Ll long long const int N = 1e6 + 3;
LL a[N];
int n,p[33]; inline int read(){
int v = 0,c = 1;char ch = getchar();
while(ch < '0' || ch > '9'){
if(ch == '-') c = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9'){
v = ( v << 3 ) + ( v << 1 ) + ( ch ^ 48 );
ch = getchar();
}
return v * c;
}
int main(){
n = read();
p[0] = 1;
long long ans = 0;
for(int i = 1;i <= 30;++i) p[i] = p[i - 1] << 1;
for(int i = 1;i <= n;++i) a[i] = read();
std::sort(a + 1,a + n + 1) ;
for(int j = 30;j >= 0;--j){
int l = 1,r = n ;
while(l < r){
while(a[l] + a[r] > (long long)p[j]) -- r ;
while(a[l] + a[r] < (long long)p[j]) ++ l ;
if(l >= r) break ;
if(a[l] == a[r]){if(a[l] + a[r] == (long long)p[j]) ans += (long long)(r - l + 1) * (r - l) / 2;break ;}
int ll = l,rr = r ; long long sum1 = 0,sum2 = 0;
if(a[ll] + a[rr] == (long long)p[j]){
while(a[ll] == a[l]) ++ sum1 , ++ ll ;
while(a[rr] == a[r]) ++ sum2 , -- rr ;
}
ans += sum1 * sum2 ; l = ll , r = rr ;
}
}
printf("%lld\n",ans);
Noip2018RPINF;
}

RDay1-Problem 1 A的更多相关文章

  1. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  2. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  5. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  6. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  10. PHP curl报错“Problem (2) in the Chunked-Encoded data”解决方案

    $s = curl_init(); curl_setopt($s, CURLOPT_POST, true); curl_setopt($s, CURLOPT_POSTFIELDS, $queryStr ...

随机推荐

  1. centos系统java后台运行(xshll关掉不至于jar程序结束)

    这样执行,就可以后台运行java程序 nohup java -Dfile.encoding=UTF-8 -jar xxx.jar  & 后台内容在该目录下nohup .out文件内,netst ...

  2. 软工+C(1): 题目设计、点评和评分

    // 下一篇:分数和checklist 如何设计题目 教学中的一个问题是老师出题太简单了,题目设计一开始上来就不紧凑,我认为一个好的课程应该上来就给你紧凑感,而不是先上来"轻松2-3周&qu ...

  3. webpack2.0 css文件引入错误解决及图片输出在根目录配置问题

    webpack引入css文件,main.js内容如下 import Vue from 'vue'; import App from './App.vue'; import Mint from 'min ...

  4. 关于dubbo+zookeeper微服务的一些认识记录

    借鉴架构示意图: 实例介绍: 公司某项目架构 服务器A:nginx 服务器BC:tomcat1.tomcat2 服务器D:Dubbo+zookeeper 服务器EF:db1+zookeeper.db2 ...

  5. BM算法学习笔记

    一种nb算法,可以求出数列的递推式. 具体过程是这样的. 我们先假设它有一个递推式,然后按位去算他的值. ;j<now.size();++j)(delta[i]+=1ll*now[j]*f[i- ...

  6. SQL---mysql新增字段

    ) DEFAULT NULL COMMENT '姓名' 修改表 people  增加字段 name    长度100  默认为null   备注:姓名

  7. uImage

    linux内核经过编译后会生成一个ELF格式的可执行程序,叫vmlinux或vmlinuz,是原始的未经任何处理加工的原版内核ELF文件:嵌入式系统烧录的一般不是这个vmlinuz/vmlinux,而 ...

  8. wiki中文语料的word2vec模型构建

    一.利用wiki中文语料进行word2vec模型构建 1)数据获取 到wiki官网下载中文语料,下载完成后会得到命名为zhwiki-latest-pages-articles.xml.bz2的文件,里 ...

  9. windows下创建启动脚本bat

    最主要是运用bat命令. call执行命令 比如 启动solr的服务,以前要进去solr的目录,然后bin/solr start    这样很麻烦.可以写个脚本放到桌面. call %CATALINA ...

  10. Entity Framework入门教程(14)---DbFirst下的存储过程

    EF6中DbFirst模式下使用存储过程 我们已经知道EF可以将L2E或Entity SQL的查询语句自动转换成SQL命令,也可以根据实体的状态自动生成Insert/update/delete的Sql ...