开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了。

Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras

Abstract

Optimization objectives:

  1. intrinsic/extrinsic parameters of all keyframes
  2. all selected pixels' depth

Integrate constraints from static stereo (左右两个相机的立体视觉约束是静态的) into the bundle adjustment pipeline of temporal multi-view stereo.
Fixed-baseline stereo resolves scale drift.

? It also reduces the sensitivities to large optical flow and to rolling shutter effect which are known shortcomings of direct image alignment methods.

1. Introduction

stem from: working in an effective way
heuristically: 启发式的
hallucinate: 出现幻觉
strip down: reduced to its simplest form

Strasdat et al. proposed to expand the concept of keyframes to integrate scale and proposed a double window optimization (Figure out what is it)

Direct methods aim at computing geometry and motion directly from the images thereby skipping the intermediate keypoint selection step.

The key idea of LSD SLAM is to incrementally track the camera and simultaneously perform a pose graph optimization in order to keep the entire camera trajectory globally consistent. 作者认为这种方式没有减少累计误差,只是把它扩散到整个轨迹中( So the meaning of pose graph is? )。

Three drawbacks of DSO:

  1. The mentioned performance was gained on a photometrically calibrated dataset, in its absense, the performance would degrade.
  2. Scale drift
  3. DSO is quite sensitive to geometric distortion as those induces by fast motion and rolling shutter. While techniques for calibrating rolling shutter exist for direct SLAM algorithm, these are often quite involved and far from real-time capable.

Contribution:

  1. A stereo version of DSO. detail the proposed combination of temporal multi-view stereo and static stereo.
  2. Stereo DSO is good.

2. Direct Sparse VO with Stereo Camera

  • Absolute scale can be directly calculated from static stereo from the known baseline of the stereo camera
  • Static stereo can provide initial depth estimation for multi-view stereo
  • Static Stereo can only accurately triangulate 3D points within a limited depth range while this limit is resolved by temporal multi-view stereo.

New stereo frames are first tracked with respect to their reference keyframe in a coarse-to-fine mannar.

A joint optimization of their poses, affine brightness (两个参数:a和b) parameters, as well as the depts of all the observed 3D points and camera intrinsics, is performed.

2.1 Notation

Nothing important.

2.2 Direct Image Alignment Formulation

\[
E_{ij}=\sum_{p\in P_i}\omega_p \left\| I_j[p'] - I_i[p] \right\|_\gamma
\]

where \(\omega_p\) is the weight which is shown as follows.(梯度越大权重越小,不知道为啥)
\[
\omega_p = \frac{c^2}{c^2+\left\| \nabla I_i(p) \right\| ^2_2}
\]

光度误差对突然的光照变化非常敏感。

2.3 Tracking

All the potins inside the active window are projected into the new frame. Then the pose of the new frame is optimized by minimizing the energy function.
在之前的单目DSO中,用随机深度值来初始化,所以都会需要一个确定模式的移动来初始化。在本文中,因为这时候stereo image pair的affine brightness transfer factor是位置的,所以用NCC在水平极限上的3*5的领域中搜索。

2.4 Frame Management

The basic idea is to check if the scene or the illumination has sufficiently changed.

  • scene change: 用mean square optical flow和 mean squared optical flow without rotation between the current frame and the last keyframe来衡量。
  • illumination change: 用relative brightness factor \(|a_j - a_i|\) 来衡量。

-> 一个点如果是梯度大于一个阈值并且是一个block里最大的点,那么他会被选择。

-> Before a candidate point is activated and optimized in the windowed optimization, its inverse depth is constantly refined by the following non-keyframes. (找出来怎么做的)

-> 旧去新来:在边缘化点的时候把候选点加入到联合优化中。

-> The constraints from static stereo introduce scale information into the system, and they also provide good geometric priors to temporal multi-view stereo.

2.5 Windowed Optimization

-> Temporal Multi-View Stereo: 就一般的不同时刻的图片之间的立体视觉
-> Static Stereo:
-> Stereo Coupling: 为了平衡上两种约束的权重,我们引入了\(\lambda\)参数。
-> Margninalization: 在边缘化一个关键帧之前,我们首先会边缘化所有没有被过去两个关键帧看到所有active window中的点。

3. Evaluation

暂且略过不表

4. Conclusion

未来可以做的两件事:

  • Loop closuring and a database for map maintenance (LDSO半闲居士做过了)
  • Dynamic object handling to further boost the VO accuracy and robustness. (用深度学习做动态物体检测然后动的点不要了?)
    虽然自己在SLAM领域还有很多可以学习的,但是这样感觉直接法的东西也做完了?悲伤。。

Paper Reading: Stereo DSO的更多相关文章

  1. [Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph

    <Exploiting Relevance Feedback in Knowledge Graph> Publication: KDD 2015 Authors: Yu Su, Sheng ...

  2. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  3. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  4. Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...

  5. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  6. Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★

    Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...

  7. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  8. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

  9. Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...

随机推荐

  1. window bat 切换目录并执行php文件

    新建一个 test.bat文件,输入一下命令并保存 cmd /k "cd /d D:\PHPWAMP_IN2\phpwamp\server\Nginx-PHPWNMP\htdocs\test ...

  2. Vue-Router路由Vue-CLI脚手架和模块化开发 之 vue-router路由

    vue-router路由:Vue.js官网推出的路由管理器,方便的构建单页应用: 单页应用(SPA)只有一个web页面的应用,用户与应用交互时,动态更新该页面的内容:简单来说,根据不同的url与数据, ...

  3. kafka学习-坑篇

    安装(滤过) 启动(滤过) 坑(开始)--- topic creat完成后准备使用console-produce发布一个topic,错误如下: [-- ::,] WARN [Producer clie ...

  4. IDEA中Git的更新、提交、还原方法

    第一步:在提交项目之前必须先对项目进行更新,此项特别重要,如果不进行更新,别人有项目提交到服务器上,那么你的项目将会提交不上去,使用git解决冲突会比较麻烦,即使你解决了冲突,但是有时候不注意会冲掉别 ...

  5. 记一次JAVAWEB项目部署

    需求 原本服务器上tomcat部署了一个javaweb项目在80端口,这次要部署另一个javaweb项目在8090端口,或者同时部署在同一端口不同目录下. 解决方法 不同端口部署 不同端口部署我们需要 ...

  6. opencv学习之路(34)、SIFT特征匹配(二)

    一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...

  7. GOQTTemplate简单介绍

    集合OpenCV的视频功能和QCamera的摄像头接口,开发出易于理解的.结构简单的摄像头控制和采集框架.   MainWindow);    bCameraOpen = false;     //显 ...

  8. Git 版本还原命令

    转载:https://blog.csdn.net/yxlshk/article/details/79944535 1.需求场景: 在利用github实现多人协作开发项目的过程中,有时会出现错误提交的情 ...

  9. StreamReader 和 StreamWriter 简单调用

    /* ######### ############ ############# ## ########### ### ###### ##### ### ####### #### ### ####### ...

  10. express之req res

    request对象和response对象 Request req.baseUrl 基础路由地址 req.body post发送的数据解析出来的对象 req.cookies 客户端发送的cookies数 ...