Problem

Codeforces-671D

题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边)

\(n,m\leq 3\times 10^5\)

Solution

有一个线性规划的对偶式子(是从这篇里学习的):

\(\max\{c^Tx|Ax\leq b\}=\min\{b^Ty|A^Ty\geq c\}\)

(其中 \(x,y,b,c\) 为列向量,\(A\) 为一个矩阵)

其理解可以参照下面这个模型:

第一个式子中:工厂主有 \(n\) 个产品,其中 \(A\) 为这些产品所需原材料的数量,\(x\) 为产品生产数量,\(c\) 为生产一件产品的收益,\(b\) 为原材料数量

第二个式子中:喻同学有 \(m\) 种原材料,其中 \(A^T\) 上述矩阵的转置,\(b,c\) 同理,\(y\) 表示给原材料的定价

第一个式子中的现实意义:工厂主在使用现有原材料的情况下,生产产品所得最大收益

第二个式子中的现实意义:喻同学给工厂主的原材料定价,使得工厂主无论如何都无法获得任何收益,在此情况下尽量使得工厂主支出最少

由于工厂主要最大化自己的收益,而在喻同学的操作下,工厂主已经无法获益,要最大化自己收益(可能为负)只能尽量减少支出

由现实意义可以得出该式子,但严谨证明暂略


回到这题,由于求最小的花费不容易求,使用上述对偶关系进行转换:

原题套用第二个式子:

\(b^T\) : 每条链的费用

\(y\) : 每条链是否选择

\(A^T\) : 每条边是否被每条链覆盖

\(c\) : 每条边至少覆盖一次

求费用最小

对偶成第一个式子:

\(c^T\) : 每条边被覆盖一次

\(x\) : 给每条边构造的权值

\(A\) : 每条链是否覆盖每个点

\(b\) : 每条链的费用

求构造值之和最大

所以原题转化成:给定一棵树,要求给每条边构造一个权值,使得对于每条链而言,链上边权值之和不大于当前链的权值。由于原题保证链一定有祖先关系,可以左偏树贪心

Code

/*
Problem Source : cf-671D
Author : oier_hzy
Time : Nov 19 2019
*/
#include <bits/stdc++.h>
using namespace std; inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
} const int N = 301000;
struct Edge{int v,w,nxt;} a[N*3];
int head[N], Head[N];
int tag[N], cov[N];
int dep[N], len[N];
int rt[N], ls[N], rs[N];
int n,m,_,tot; long long Ans; inline void add(int x,int y,int z,int*arr){a[++_].v = y, a[_].w = z, a[_].nxt = arr[x], arr[x] = _;} struct node{int w, ps;}t[N]; inline void put_tag(int x,int y) {t[x].w += y, tag[x] += y;}
inline void down_tag(int x){
int&v = tag[x];
if(!v) return ;
if(ls[x]) put_tag(ls[x], v);
if(rs[x]) put_tag(rs[x], v);
v = 0;
} int merge(int x,int y){
if(!x or !y) return x | y;
down_tag(x), down_tag(y);
if(t[x].w > t[y].w) swap(x,y);
rs[x] = merge(rs[x], y);
if(len[ls[x]] < len[rs[x]]) swap(ls[x], rs[x]);
len[x] = len[rs[x]] + 1;
return x;
} void dfs(int x,int las){
for(int i=head[x];i;i=a[i].nxt)
if(a[i].v != las){
dep[a[i].v] = dep[x] + 1;
dfs(a[i].v,x);
rt[x] = merge(rt[x], rt[a[i].v]);
cov[x] += cov[a[i].v];
}
if(x != 1 and !cov[x]) puts("-1"), exit(0);
for(int i=Head[x];i;i=a[i].nxt){
t[++tot] = (node) {a[i].w, a[i].v};
rt[x] = merge(rt[x], tot);
}
while(rt[x] and dep[t[rt[x]].ps] >= dep[x]) {
down_tag(rt[x]);
rt[x] = merge(ls[rt[x]], rs[rt[x]]);
}
Ans += t[rt[x]].w, put_tag(rt[x], -t[rt[x]].w);
} int main(){
read(n), read(m);
int x,y,z;
for(int i=1;i<n;++i){
read(x), read(y);
add(x,y,0,head);
add(y,x,0,head);
}
while(m--){
read(x), read(y), read(z);
++cov[x], --cov[y];
add(x,y,z,Head);
}
dfs(1,0);
printf("%lld\n",Ans);
return 0;
}

题解-Codeforces671D Roads in Yusland的更多相关文章

  1. [Codeforces671D]Roads in Yusland

    [Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...

  2. Codeforces 671 D. Roads in Yusland

    题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...

  3. 【CF671D】Roads in Yusland(贪心,左偏树)

    [CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...

  4. 【CF617D】Roads in Yusland

    [CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...

  5. 【CodeForces】671 D. Roads in Yusland

    [题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...

  6. codesforces 671D Roads in Yusland

    Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...

  7. 题解-CodeForces835F Roads in the Kingdom

    Problem CodeForces-835F 题意:求基环树删去环上任意一边后直径最小值,直径定义为所有点对最近距离的最大值 Solution 首先明确删去环上一点是不会影响树内直径的,所以应当先把 ...

  8. Codeforces 671D Roads in Yusland [树形DP,线段树合并]

    洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...

  9. codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem

    dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.

随机推荐

  1. springboot 配置文件

    – Spring Boot使用一个全局的配置文件 • application.properties • application.yml – 配置文件放在src/main/resources目录或者类路 ...

  2. 手动安装Package Control

    手动下载一个package control的包:https://github.com/wbond/package_control 然后Download ZIP后,解压,将解压后的文件夹重命名为 Pac ...

  3. Promise async-await 异步解决方案

    1.简介:     async和await在干什么,async用于申明一个function是异步的,而await可以认为是async wait的简写,等待一个异步方法执行完成. 2.基本语法   在C ...

  4. Pod install Error List

    1. Error installing Crashlytics while executing pod install [!] Error installing Crashlytics [!] /us ...

  5. String.Join Method

    Overloads Join(String, String[], Int32, Int32) Concatenates the specified elements of a string array ...

  6. 清北学堂(2019 4 28 ) part 1

    今天主要用来铺路,打基础 枚举 没什么具体算法讲究,但要考虑更优的暴力枚举方法,例如回文质数,有以下几种思路: 1.挨个枚举自然数,再一起判断是否是回文数和质数,然而一看就不是最优 2.先枚举质数再判 ...

  7. nsx-edge虚拟机抓包实践

    Edge抓包 今天在客户端进行故障排除时,我需要在环境中的一个边缘服务网关上执行包捕获.在诊断一系列不同的问题时,执行包捕获通常非常有用. 要启动包捕获,您可以跳到ESG的控制台,或者像我在本例中所做 ...

  8. 计算指定文件的MD5值

    /// <summary> /// 计算指定文件的MD5值 /// </summary> /// <param name="fileName"> ...

  9. JS学习笔记Day24

    一.闭包和函数 (一)什么是闭包函数 概念:简单说就是函数中嵌套函数,嵌套在这里面的函数叫做闭包函数,外面的函数叫做闭包环境 作用:通过闭包函数,可以访问到闭包函数所在局部作用域中的变量及参数 特点: ...

  10. 关于 iOS 性能优化方面的面试题,

    这是我前面几天碰到的面试题: 如何对定位和分析项目中影响性能的地方?以及如何进行性能优化? 我的答案: 定位方法: instruments   在iOS上进行性能分析的时候,首先考虑借助instrum ...