【medium】990. Satisfiability of Equality Equations 并查集
Given an array equations of strings that represent relationships between variables, each string equations[i]
has length 4
and takes one of two different forms: "a==b"
or "a!=b"
. Here, a
and b
are lowercase letters (not necessarily different) that represent one-letter variable names.
Return true
if and only if it is possible to assign integers to variable names so as to satisfy all the given equations.
Example 1:
Input: ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second. There is no way to assign the variables to satisfy both equations.
Example 2:
Input: ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Example 3:
Input: ["a==b","b==c","a==c"]
Output: true
Example 4:
Input: ["a==b","b!=c","c==a"]
Output: false
Example 5:
Input: ["c==c","b==d","x!=z"]
Output: true
Note:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0]
andequations[i][3]
are lowercase lettersequations[i][1]
is either'='
or'!'
equations[i][2]
is'='
class Solution {
private:
int f[]; void init(){
for (int i=;i<;i++)
f[i] = i;
} int get_f(int x) {
if (int(f[x]) == int(x)) {
return x;
}
return f[x] = get_f(f[x]); // wrong
} void merge(int a, int b){
a = get_f(a); // wrong
b = get_f(b);
f[a] = b;
} bool is_same_set(int a, int b){
if (get_f(a) == get_f(b))
return true;
return false;
} public:
bool equationsPossible(vector<string>& equations) {
init();
for (string s : equations){ // first: ==
cout<<s<<endl;
int a = s[] - 'a'; // wrong
int b = s[] - 'a';
if (s[] == '=')
merge(a, b);
} for (string s : equations){ // second: !=
cout<<s<<endl;
int a = s[] - 'a'; // wrong
int b = s[] - 'a';
if (s[] == '!')
if (is_same_set(a, b))
return false;
}
return true;
}
};
【medium】990. Satisfiability of Equality Equations 并查集的更多相关文章
- LC 990. Satisfiability of Equality Equations
Given an array equations of strings that represent relationships between variables, each string equa ...
- 【leetcode】990. Satisfiability of Equality Equations
题目如下: Given an array equations of strings that represent relationships between variables, each strin ...
- 【LeetCode】990. Satisfiability of Equality Equations 解题报告(C++ & python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 并查集 日期 题目地址:https://le ...
- LeetCode 990. Satisfiability of Equality Equations
原题链接在这里:https://leetcode.com/problems/satisfiability-of-equality-equations/ 题目: Given an array equat ...
- Satisfiability of Equality Equations - LeetCode
目录 题目链接 注意点 解法 小结 题目链接 Satisfiability of Equality Equations - LeetCode 注意点 必须要初始化pre 解法 解法一:典型的并查集算法 ...
- [Swift]LeetCode990. 等式方程的可满足性 | Satisfiability of Equality Equations
Given an array equations of strings that represent relationships between variables, each string equa ...
- [leetcode] 并查集(Ⅱ)
最长连续序列 题目[128]:链接. 解题思路 节点本身的值作为节点的标号,两节点相邻,即允许合并(x, y)的条件为x == y+1 . 因为数组中可能会出现值为 -1 的节点,因此不能把 root ...
- LeetCode:并查集
并查集 这部分主要是学习了 labuladong 公众号中对于并查集的讲解,文章链接如下: Union-Find 并查集算法详解 Union-Find 算法怎么应用? 概述 并查集用于解决图论中「动态 ...
- 【并查集专题】【HDU】
PS:做到第四题才发现 2,3题的路径压缩等于没写 How Many Tables Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
随机推荐
- ansible roles
roles 特点 目录结构清晰 重复调用相同的任务 目录结构相同 web - tasks - install.yml - copfile.yml - start.yml - main.yml - t ...
- Python基础:数据类型-字符串(7)
1.字符串基本操作 字符串是由字符组成的一串字符序列,字符串是有顺序的,从左到右,索引从0开始,依次递增. Python中字符串类型:str. Python中字符串的三种表示方式: (1)普通字符串: ...
- servlet(2)servlet过滤器
1.servlet过滤器 用于动态的拦截servlet请求或响应,以变更或使用其中的信息. (1)过滤器和servlet是多对多的关系,即一个过滤器可以用于一个或多个servlet,多个过滤器也可以用 ...
- Capability配置简介
什么是Capability desired capability的功能是配置Appium会话.他们告诉Appium服务器您想要自动化的平台和应用程序. Desired Capabilities是一组设 ...
- 解决Windows10中Virtualbox安装虚拟机没有64位选项
今天想在Windows 10系统安装完Virtualbox虚拟机,然后打算装一个CENTOS系统,但是选择安装系统的时候竟然没有64位操作系统的选项,经过一阵Google,终于解决了,在这里盘点一下出 ...
- codeforces342B
Xenia and Spies CodeForces - 342B Xenia the vigorous detective faced n (n ≥ 2) foreign spies lined u ...
- pjb fabu
#!/bin/bash PyPath=/opt/shell/mysql LocaName=`pwd` bagname=`basename $LocaName` sleep 1s ConfList=`p ...
- Floyed-Warshall【弗洛伊德算法】
首先介绍一下有关最短路径的知识 从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径.解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算 ...
- yarn安装使用
npm install yarn -g // 到指定文件夹 yarn init // 生成package.json文件 yarn init报错 Can't answer a question unle ...
- postgreSql 基本操作总结
0. 启动pgsl数据库 pg_ctl -D /xx/pgdata start 1. 命令行登录数据库 1 psql -U username -d dbname -h hostip -p po ...