1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\rd x\rd t=\int_{\p\Omega} -\rho u\rd x+\rho \rd t\\ &\ra \exists\ m,\st \rd m=-\rho u\rd t+\rho \rd x. \eea \eeex$$ 取 $$\beex \bea t'&=t,\\ m&=\int_{(0,0)}^{(t,x)} -\rho u\rd x+\rho \rd t, \eea \eeex$$ 则称 $(t',m)$ 为 Lagrange 坐标.

2. Lagrange 坐标的物理意义

(1) $m$ 表示质量, 为质点坐标.

(2) 由 Euler 坐标 $(t,x)$ 过渡到 Lagrange 坐标 $(t',m)=(t,m)$ 本质上就是取流体质点在 $(t,x)$ 平面上的运动规律曲线作为坐标曲线.

3. Euler 坐标、Lagrange 坐标的互换

(1) Euler $\to$ Lagrange: $$\beex \bea \rd m=-\rho u\rd t+\rho\rd x,&\quad \cfrac{\p }{\p t}=\cfrac{\p}{\p t'}-\rho u\cfrac{\p }{\p m},\\ \rd t'=\rd t,&\quad\cfrac{\p}{\p x}=\rho \cfrac{\p}{\p m}. \eea \eeex$$

(2) Lagrange $\to$ Euler: $$\beex \bea \rd x=u\rd t+\tau \rd m,&\quad \cfrac{\p}{\p t'}=\cfrac{\p}{\p t}+u\cfrac{\p}{\p x},\\ \rd t=\rd t',&\quad \cfrac{\p}{\p m}=\tau \cfrac{\p}{\p x}. \eea \eeex$$

[物理学与PDEs]第2章第5节 一维流体力学方程组的 Lagrange 形式 5.2 Lagrange 坐标的更多相关文章

  1. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构

    1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3.  右端项具有间 ...

  2. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程

    1.  记号与假设 (1)  已燃气体的化学能为 $0$. (2)  单位质量的未燃气体的化学能为 $g_0>0$. 2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...

  3. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约

    1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...

  4. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组

    1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2.  物理化学 (1)  燃烧过程中, 通过化学反应 ...

  5. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.6 一维粘性热传导流体动力学方程组

    一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{ ...

  6. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.5 粘性热传导流体动力学方程组的数学结构

    1.  粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u}, ...

  7. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.4 粘性热传导流体动力学方程组

    粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u ...

  8. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程

    1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力. 2. ...

  9. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.2 应力张量

    1.  在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2.  于 $M$ 处以 ${\bf n}$ 为法向的单位面积 ...

随机推荐

  1. echarts柱状图点击阴影部分触发事件

    在很多时候我们的柱状图分布不均匀,有些柱高可能会很小,如果通过myChart.on('click',function(){})来促发事件,可能在点击的时候不好操作,因为这个click事件是绑定在各个s ...

  2. Java实现Sunday百万级数据量的字符串快速匹配算法

    背景       在平时的项目中,几乎都会用到比较两个字符串时候相等的问题,通常是用==或者equals()进行,这是在数据相对比较少的情况下是没问题的,当数据库中的数据达到几十万甚至是上百万千万的数 ...

  3. Linux定是调用shell脚本删除文件

    编写脚本 vi delbak.sh 代码如下: #!/bin/sh location="/home/mysql/backup/" find $location -mtime +7 ...

  4. js 对数据进行过滤

    //对数据进行过滤 Array.prototype.filter = Array.prototype.filter || function (func) { var arr = this; var r ...

  5. 在 CentOS 7 中安装 MySQL 8

    准备 本文环境信息: 软件 版本 CentOS CentOS 7.4 MySQL 8.0.x 安装前先更新系统所有包 sudo yum update 安装 1. 添加 Yum 包 wget https ...

  6. oracle实例安装到 4% 不能继续安装

    较为悲催的问题, 一直不知道如何解决: 偶尔听到群里的大神提起: 今天特地拿出来分享一下: 希望大家碰到能早点解决 是CPU问题: 将cpu 核心数 改为 2的指数倍: 或者将cpu打上补丁就好了: ...

  7. mysql8 安装笔记

    环境 redhat6.8 ,官网下载 rpm x64 Bund 安装包 安装 rpm -ivh xxx.rpm 安装一系列的rpm. mysql 会创建 mysql 用户及组./etc/my.cnf ...

  8. JS 设计模式三 -- 策略模式

    策略模式 概念 定义一系列算法,把它们一个个封装起来. 将算法的使用与算法的实现分离开来 实现 // 加权映射关系 var levelMap = { S: 10, A: 8, B: 6, C: 4 } ...

  9. REST命令控制Player

    本文用Postman工具演示通过REST控制Cnario Playr 注意:Player的REST通信默认关闭,使用前需要从Setting>>Remote devices打开Use RES ...

  10. 【学习总结】Git学习-本地仓库覆盖式更新对于Git仓库的影响以及pull/push到GitHub

    < 许久不用Git之后的探索 > 准备日常更新自己的GitHub了.但是编写的文件平时不放在Git仓库路径下. 故测试覆盖式更新对于仓库是否有影响 直接说结论: 通过对已有库的测试发现覆盖 ...