1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\rd x\rd t=\int_{\p\Omega} -\rho u\rd x+\rho \rd t\\ &\ra \exists\ m,\st \rd m=-\rho u\rd t+\rho \rd x. \eea \eeex$$ 取 $$\beex \bea t'&=t,\\ m&=\int_{(0,0)}^{(t,x)} -\rho u\rd x+\rho \rd t, \eea \eeex$$ 则称 $(t',m)$ 为 Lagrange 坐标.

2. Lagrange 坐标的物理意义

(1) $m$ 表示质量, 为质点坐标.

(2) 由 Euler 坐标 $(t,x)$ 过渡到 Lagrange 坐标 $(t',m)=(t,m)$ 本质上就是取流体质点在 $(t,x)$ 平面上的运动规律曲线作为坐标曲线.

3. Euler 坐标、Lagrange 坐标的互换

(1) Euler $\to$ Lagrange: $$\beex \bea \rd m=-\rho u\rd t+\rho\rd x,&\quad \cfrac{\p }{\p t}=\cfrac{\p}{\p t'}-\rho u\cfrac{\p }{\p m},\\ \rd t'=\rd t,&\quad\cfrac{\p}{\p x}=\rho \cfrac{\p}{\p m}. \eea \eeex$$

(2) Lagrange $\to$ Euler: $$\beex \bea \rd x=u\rd t+\tau \rd m,&\quad \cfrac{\p}{\p t'}=\cfrac{\p}{\p t}+u\cfrac{\p}{\p x},\\ \rd t=\rd t',&\quad \cfrac{\p}{\p m}=\tau \cfrac{\p}{\p x}. \eea \eeex$$

[物理学与PDEs]第2章第5节 一维流体力学方程组的 Lagrange 形式 5.2 Lagrange 坐标的更多相关文章

  1. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构

    1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3.  右端项具有间 ...

  2. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程

    1.  记号与假设 (1)  已燃气体的化学能为 $0$. (2)  单位质量的未燃气体的化学能为 $g_0>0$. 2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...

  3. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约

    1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...

  4. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组

    1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2.  物理化学 (1)  燃烧过程中, 通过化学反应 ...

  5. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.6 一维粘性热传导流体动力学方程组

    一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{ ...

  6. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.5 粘性热传导流体动力学方程组的数学结构

    1.  粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u}, ...

  7. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.4 粘性热传导流体动力学方程组

    粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u ...

  8. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程

    1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力. 2. ...

  9. [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.2 应力张量

    1.  在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2.  于 $M$ 处以 ${\bf n}$ 为法向的单位面积 ...

随机推荐

  1. 软件设计之Deep Module(深模块)

    类是不是越小越好?最近在读John Ousterhout的<A Philosophy of Software Design>,感到作者文笔流畅,书中内容具有启发性.这里摘要一部分内容,以供 ...

  2. Python距离放弃拉近的day03

    新的一天,依旧是内容补充,补充了数学没有的运算符,in和not in,就是判断in前面的东西是不是在后面的数据中,然后新课讲了平常最常用的字符串的方法,引号的里面全部都是字符串,在其中就会又如何判断这 ...

  3. mysql 相关命令

    1.mysql导入导出 导出 进入到mysql bin目录 导出表 ./mysqldump -uroot -p --socket=/wdcloud/app/mysql1/temp/mysql.sock ...

  4. Linux内核入门到放弃-Ext2数据结构-《深入Linux内核架构》笔记

    Ext2文件系统 物理结构 结构概观 块组是该文件系统的基本成分,容纳了文件系统的其他结构.每个文件系统都由大量块组组成,在硬盘上相继排布: ----------------------------- ...

  5. 网易云歌词解析(配合audio标签实现本地歌曲播放,歌词同步)

    先看下效果 github上做的一个音乐播放器: https://github.com/SorrowX/electron-music 中文歌曲 英文歌曲(如果有翻译的中文给回返回出去) 韩文歌曲 来看下 ...

  6. go笔记-pprof使用

    go tool pprof http://localhost:6060/debug/pprof/profile go tool pprof http://localhost:6060/debug/pp ...

  7. PHP性能优化:in_array和isset 在大数组查询中耗时相差巨大,以及巧妙使用array_flip

    今天在PHP业务开发中,发现了一个问题. 两个较大数组(20万+元素),遍历其中一个$a,另一个数组$b用于查找元素. 比如 foreach($a as $val){ if(in_array($xx, ...

  8. 用JS解决url地址中参数乱码的问题

    var url = window.location.herf;//获取url地址 var obj = {}; //最后输出的对象 var reg = /\?/; //要匹配的正则表达式 if(url. ...

  9. Oracle的表被锁后的恢复

    运行下列SQL,找出数据库的serial#,执行结果如下图所示 SELECT T2.USERNAME, T2.SID, T2.SERIAL#, T2.LOGON_TIME   FROM V$LOCKE ...

  10. JVM调优:HotSpot JVM垃圾收集器

    HotSpot JVM垃圾收集器 - Snooper - 博客园https://www.cnblogs.com/snooper/p/8718478.html