设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac{1}{b-a}\int_a^b f^p(t)\rd t. \eex$$ 试求 $\dps{\vlm{p}x_p}$.

解答: 由 H\"older 不等式, $$\beex \bea f^p(x_p)&=\cfrac{1}{b-a}\int_a^b f^p(t)\cdot 1\rd t\\ &\leq \cfrac{1}{b-a}\sex{ \int_a^b f^{p\cdot\frac{p+1}{p}}(t)\rd t }^\frac{p}{p+1} \sex{ \int_a^b 1^{p+1}\rd t }^{\frac{1}{p+1}}\\ &=\cfrac{1}{b-a} \sex{\int_a^b f^{p+1}(t)\rd t}^{\frac{p}{p+1}} (b-a)^{\frac{1}{p+1}}\\ &=\sex{\cfrac{1}{b-a}\int_a^b f^{p+1}(t)\rd t}^\frac{p}{p+1}\\ &=f^p(x_{p+1}). \eea \eeex$$ 又 $f$ 严格递增, 我们有 $x_p\leq x_{p+1}$. 如此, $x_p$ 递增有上界. 由单调有界定理, $\dps{\vlm{p}x_p=x_\infty}$ 存在. 另外, $$\beex \bea f(x_p)&=\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}},\\ f(x_\infty)&=\vlm{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} =\max_{a\leq t\leq b}f(t)=f(b),\\ x_\infty&=b, \eea \eeex$$ 其中第二个等式成立 (对 $f\geq 0$) 的理由如下. 显然, $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} \leq \max_{a\leq t\leq b}f(t). \eex$$ 又设 $$\bex \exists\ \xi\in [a,b],\st f(\xi)=\max_{a\leq t\leq b}f(t). \eex$$ 而对 $\forall\ \ve>0$, 存在 $\xi$ 的某个左或右邻域 (因为 $\xi$ 可能为端点, 而只能如此说) $[c,d]$ 使得 $$\bex x\in [c,d]\ra f(x)\geq f(\xi)-\ve. \eex$$ 于是 $$\beex \bea \sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}&\geq \sez{\cfrac{1}{b-a}\int_c^d f^p(t)\rd t}^{\frac{1}{p}}\\ &\geq [f(\xi)-\ve] \sex{\cfrac{d-c}{b-a}}^{\frac{1}{p}}. \eea \eeex$$ 令 $p\to\infty$ 有 $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}\geq f(\xi)-\ve. \eex$$ 再令 $\ve\to 0^+$ 有 $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}\geq f(\xi). \eex$$

[再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  8. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. PyCharm使用小技巧

    本文部分内容参考了明宇李前辈的博客,原文请阅读 Pycharm的配置(背景颜色,字体,解释器等): 鼠标滑轮控制字体大小 部分参考了墨颜前辈的博客,原文请阅读 用鼠标滑轮控制代码字体大小: 感谢各位前 ...

  2. 设置TextBlock默认样式后,其他控件的Text相关属性设置失效问题

    问题: 定义了默认TextBlock样式后,再次自定义下拉框 or 其他控件 ,当内部含有TextBlock时,设置控件的字体相关样式无效,系统始终使用TextBlock设置默认样式 解决方案: 为相 ...

  3. android菜鸟,了解android工程目录结构

  4. 超哥笔记--shell 基本命令(4)

    一 linux 命令行的组成结构 自定义命令行结构 PS1变量来控制 \u \W 最后一位工作目录 \w 绝对路径工作目录 \t 显示24h制的时间 \h PS1="[\u@\h \w \t ...

  5. i春秋 百度杯”CTF比赛 十月场 login

    出现敏感的信息,然后进行登录 登录成功发现奇怪的show 然后把show放到发包里面试一下 出现了源码,审计代码开始 出flag的条件要user 等于春秋 然后进行login来源于反序列化后的logi ...

  6. 使用 Linux 文件恢复工具

    使用 Linux 文件恢复工具         Linux 文件恢复的原理 inode 和 block 首先简单介绍一下 Linux 文件系统的最基本单元:inode.inode 译成中文就是索引节点 ...

  7. 本文详解5G是个什么鬼,程序员都准备好了吗?

    无线移动通讯发展历史 最近5G的概念炒的如火如荼,为此,华为和高通还干了一仗.这篇文章从技术层面给大家分析,什么是5G,它和4G比,高级在哪里? 我们来看看移动互联网的技术发展: 然后我们在来看看他们 ...

  8. IdentityServer4【Reference】之Profile Service

    Profile Service 当创建令牌或者请求像Userinfo这种端点时,IdentityServer通常会需要用户的标识信息(identity information),默认情况下,Ident ...

  9. php_network_getaddresses: getaddrinfo failed 原因

    一般在调用外部服务请求时候,有时由于配置问题无法访问,phph会报一个php_network_getaddresses: getaddrinfo failed: Name or servicenot ...

  10. MyBatis的接口式编程Demo

    很久没细看过MyBatis了,时间一长就容易忘记. 下面是一个接口式编程的例子. 这里的例子一共分为4步: 1 首先要有一个namespace为接口的全类名的映射文件,该例中是 IMyUser.xml ...