tf.gradients

官方定义:

tf.gradients(
ys,
xs,
grad_ys=None,
name='gradients',
stop_gradients=None,
)

Constructs symbolic derivatives of sum of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors. grad_ys is a list of Tensor, holding the gradients received by theys. The list must be the same length as ys.

gradients() adds ops to the graph to output the derivatives of ys with respect to xs. It returns a list of Tensor of length len(xs) where each tensor is the sum(dy/dx) for y in ys.

grad_ys is a list of tensors of the same length as ys that holds the initial gradients for each y in ys. When grad_ysis None, we fill in a tensor of '1's of the shape of y for each y in ys. A user can provide their own initial grad_ys to compute the derivatives using a different initial gradient for each y (e.g., if one wanted to weight the gradient differently for each value in each y).

stop_gradients is a Tensor or a list of tensors to be considered constant with respect to all xs. These tensors will not be backpropagated through, as though they had been explicitly disconnected using stop_gradient. Among other things, this allows computation of partial derivatives as opposed to total derivatives.

翻译:

1. xs和ys可以是一个张量,也可以是张量列表,tf.gradients(ys,xs) 实现的功能是求ys(如果ys是列表,那就是ys中所有元素之和)关于xs的导数(如果xs是列表,那就是xs中每一个元素分别求导),返回值是一个与xs长度相同的列表。

例如ys=[y1,y2,y3], xs=[x1,x2,x3,x4],那么tf.gradients(ys,xs)=[d(y1+y2+y3)/dx1,d(y1+y2+y3)/dx2,d(y1+y2+y3)/dx3,d(y1+y2+y3)/dx4].具体例子见下面代码第16-17行。

2. grad_ys 是ys的加权向量列表,和ys长度相同,当grad_ys=[q1,q2,g3]时,tf.gradients(ys,xs,grad_ys)=[d(g1*y1+g2*y2+g3*y3)/dx1,d(g1*y1+g2*y2+g3*y3)/dx2,d(g1*y1+g2*y2+g3*y3)/dx3,d(g1*y1+g2*y2+g3*y3)/dx4].具体例子见下面代码第19-21行。

3. stop_gradients使得指定变量不被求导,即视为常量,具体的例子见官方例子,此处省略

 import tensorflow as tf
w1 = tf.Variable([[1,2]])
w2 = tf.Variable([[3,4]])
res = tf.matmul(w1, [[2],[1]]) #ys必须与xs有关,否则会报错
# grads = tf.gradients(res,[w1,w2])
#TypeError: Fetch argument None has invalid type <class 'NoneType'> # grads = tf.gradients(res,[w1])
# # Result [array([[2, 1]])] res2a=tf.matmul(w1, [[2],[1]])+tf.matmul(w2, [[3],[5]])
res2b=tf.matmul(w1, [[2],[4]])+tf.matmul(w2, [[8],[6]]) # grads = tf.gradients([res2a,res2b],[w1,w2])
#result:[array([[4, 5]]), array([[11, 11]])] grad_ys=[tf.Variable([[1]]),tf.Variable([[2]])]
grads = tf.gradients([res2a,res2b],[w1,w2],grad_ys=grad_ys)
# Result: [array([[6, 9]]), array([[19, 17]])] with tf.Session() as sess:
tf.global_variables_initializer().run()
re = sess.run(grads)
print(re)

TensorFlow tf.gradients的用法详细解析以及具体例子的更多相关文章

  1. jquery.cookie用法详细解析,封装的操作cookie的库有jquery.cookie.js

    jquery.cookie用法详细解析 需要注意存入cookie前,对数据进行序列化, 得到后在反序列化: 熟练运用:JSON.stringify();和JSON.parse(): 通常分为如下几个步 ...

  2. jquery.cookie用法详细解析

    本篇文章主要是对jquery.cookie的用法进行了详细的分析介绍,需要的朋友可以过来参考下,希望对大家有所帮助 Cookie是由服务器端生成,发送给User-Agent(一般是浏览器),浏览器会将 ...

  3. JQUERY dialog的用法详细解析

    本篇文章主要是对JQUERY中dialog的用法进行了详细的分析介绍,需要的朋友可以过来参考下,希望对大家有所帮助 今天用到了客户端的对话框,把 jQuery UI 中的对话框学习了一下. 准备 jQ ...

  4. c++中new的三种用法详细解析

    转载至: http://www.jb51.net/article/41524.htm 以下的是对c++中new的三种使用方法进行了详细的分析介绍,需要的朋友可以过来参考下,希望对大家有所帮助. 一. ...

  5. PHP引用符&的用法详细解析

    本文转自:http://blog.csdn.net/vip_linux/article/details/10206091PHP中引用符&的用法.关于php的引用(就是在变量或者函数.对象等前面 ...

  6. linux mount命令的用法详细解析

    挂接命令(mount)首先,介绍一下挂接(mount)命令的使用方法,mount命令参数非常多,这里主要讲一下今天我们要用到的.命令格式:mount [-t vfstype] [-o options] ...

  7. jquery.cookie实战用法详细解析

    Cookie是由服务器端生成,发送给User-Agent(一般是浏览器),浏览器会将Cookie的key/value保存到某个目录下的文本文件内,下次请求同一网站时就发送该Cookie给服务器(前提是 ...

  8. 2:jquery.cookie用法详细解析

    一个轻量级的cookie 插件,可以读取.写入.删除 cookie. jquery.cookie.js 的配置 首先包含jQuery的库文件,在后面包含 jquery.cookie.js 的库文件. ...

  9. Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析

    backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...

随机推荐

  1. 使用Netty实现HTTP服务器

    使用Netty实现HTTP服务器,使用Netty实现httpserver,Netty Http Netty是一个异步事件驱动的网络应用程序框架用于快速开发可维护的高性能协议服务器和客户端.Netty经 ...

  2. sql server实现简繁转换

    /*--调用示例 gb_to_big和big_to_gb表存放着常用的简繁字 --可以百度到常用的简体汉字,然后用excel转换成繁体  再导入数据库. --转换为繁体 select dbo.f_GB ...

  3. kafka原理和架构

    转载自:  https://blog.csdn.net/lp284558195/article/details/80297208 参考:   https://blog.csdn.net/qq_2059 ...

  4. SpringCloud入门

    一. 什么是 SpringCloud           什么是 SpringCloud:是一个服务治理平台,提供了一些服务框架.包含了:服务注册与发现.配置中心.消息中心 .负载均衡.数据监控等等. ...

  5. redis.Redis与redis.StrictRedis区别

    redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令(比如,SET命令对应与StrictRedi ...

  6. anaconda 命令集合

    0.安装 $ bash ~/Downloads/Anaconda3-5.3.1-MacOSX-x86_64.sh source ~/.bash_profile 1.查看 anaconda 的版本 co ...

  7. 解释器、环境变量、如何运行python程序、变量先定义后引用

    python解释器的介绍.解释器的安装.环境变量的添加为什么加环境变量.如何调取不同的解释器版本实现多版本共存.python程序如何运行的.python的变量定义 一.python解释器: 用来翻译语 ...

  8. 关闭或启动linux防火墙后,docker启动容器报错

    # docker启动报错   # 解决办法:重建docker0网络恢复   #按照进程名杀死docker进程 [root@localhost mysqlconf]# pkill docker #清空防 ...

  9. Exp3 免杀原理与实践 20164302 王一帆

    1 实践内容 1.1 正确使用msf编码器(0.5分),msfvenom生成如jar之类的其他文件(0.5分),veil-evasion(0.5分),加壳工具(0.5分),使用shellcode编程( ...

  10. c# Exchange 收件箱获取。

    public List<Email> GetInbox() { try { List<Email> lstEmails = new List<Email>(); F ...