Faster-RCNN理解
一、Faster-RCNN基本结构
该网络结构大致分为三个部分:卷积层得到高位图像特征feature maps、Region Proposal Network得到候选边框、classifier识别出物体及得到准确bounding box。
二、feature maps
最后一层卷积层输出。
三、RPN
1、RPN(Region Proposal Networks)
feature maps再以3x3的卷积核进行卷积得到256xHxW的高维特征图,每个高维像素点对应原图9个anchor boxes(长宽比3种情况,boxes大小也有3种情况),共有WH*9 个anchors。接着将256xHxW的高维特征图一方面用18通道输出的1x1的卷积核将对应的anchor boxs进行前景背景分类,另一方面用36通道输出的1x1卷积核对判定为前景的anchor进坐标修正。
训练前景背景分类的时候,需要获取每个anchor的标签,当anchor box与ground truth的IOU在0.3以下,判定为背景,当anchor box与ground truth的IOU在0.7以上,判定为前景,其他情况不用于训练。在训练anchor属于前景与背景的时候,是在一张图中,随机抽取了128个前景anchor与128个背景anchor。采用SoftmaxWithLoss进行训练。
训练方框回归的时候,
也需要获取每个anchor的标签,即每个anchor到ground truth的Gx,Gy,Gw,Gh。训练时只要训练判定为前景的anchor就好了,采用SmoothL1loss进行训练,具体可以描述为:
总的损失函数为:
在这里λ被设置为10,Ncls为256(前景背景分类的正负样本分别为128),Nreg为2400(一般feature map的宽高为60x40)。这样设置的话,RPN的两部分loss值能保持平衡。
2、NMS
得到判定为前景的anchor后,会进行一次非极大值抑制(Non-Maximum Suppression,NMS)去除重叠的proposal。NMS原理参考:https://www.cnblogs.com/makefile/p/nms.html
四、classifier
1、ROI pooling
对于每个RoI而言,需要从共享卷积层上摘取对应的特征,并且送入全连接层进行分类。因此,RoI Pooling主要做了两件事,第一件是为每个RoI选取对应的特征,第二件事是为了满足全连接层的输入需求,将每个RoI对应的特征的维度转化成某个定值。例如将feature maps按水平和竖直方向六等分,再用最大池化转换,得到宽高为6x6。
2、分类与边框修正
将每个ROI输入进行分类及边框修正。分类这时要识别具体物体了,共分为C+1类(算上背景)。训练边框修正,同样使用SmoothL1loss损失函数,总体损失函数如下,其中r取1:
五、参考:
实例分割模型Mask R-CNN详解:从R-CNN,Fast R-CNN,Faster R-CNN再到Mask R-CNN - jiongnima的博客 - CSDN博客 https://blog.csdn.net/jiongnima/article/details/79094159
Faster-RCNN理解的更多相关文章
- Faster RCNN代码理解(Python)
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...
- Faster rcnn代码理解(4)
上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...
- Faster rcnn代码理解(2)
接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...
- Faster rcnn代码理解(1)
这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...
- 对faster rcnn 中rpn层的理解
1.介绍 图为faster rcnn的rpn层,接自conv5-3 图为faster rcnn 论文中关于RPN层的结构示意图 2 关于anchor: 一般是在最末层的 feature map 上再用 ...
- [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...
- 原 CNN--卷积神经网络从R-CNN到Faster R-CNN的理解(CIFAR10分类代码)
1. 什么是CNN 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Netwo ...
- 一个门外汉的理解 ~ Faster R-CNN
首先放R-CNN的原理图 显然R-CNN的整过过程大致上划分为四步: 1.输入图片 2.生成候选窗口 3.对局部窗口进行特征提取(CNN) 4.分类(Classify regions) 而R-CNN的 ...
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(理解)
0 - 背景 R-CNN中检测步骤分成很多步骤,fast-RCNN便基于此进行改进,将region proposals的特征提取融合成共享卷积层问题,但是,fast-RCNN仍然采用了selectiv ...
- 对Faster R-CNN的理解(1)
目标检测是一种基于目标几何和统计特征的图像分割,最新的进展一般是通过R-CNN(基于区域的卷积神经网络)来实现的,其中最重要的方法之一是Faster R-CNN. 1. 总体结构 Faster R-C ...
随机推荐
- 说一下syslog日志吧~~~
# -*- coding:utf-8 -*-from logging.handlers import *import loggingimport logging.handlers class MySo ...
- 转载:入门Webpack,看这篇就够了
写在前面的话 阅读本文之前,先看下面这个webpack的配置文件,如果每一项你都懂,那本文能带给你的收获也许就比较有限,你可以快速浏览或直接跳过:如果你和十天前的我一样,对很多选项存在着疑惑,那花一段 ...
- java导出pdf
//导出 public void ScoringAnnouncementdownLoad() throws MalformedURLException, IOException, D ...
- c语言头文件的认识
c头文件的作用是什么,和.c文件是怎么联系的,该怎么样编写头文件呢?这些问题我一直没搞明白,在阅读uCOS-II(邵贝贝)“全局变量”部分有些疑惑,今天终于搞清楚了头文件的一些基础知识,特地分享一下. ...
- NOIP2007奖学金题解——洛谷1093
题目描述 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金.期末,每个学生都有3门课的成绩:语文.数学.英语.先按总分从高到低排序,如果两个同学总分相同,再按语文成绩从高 ...
- java14周
1.web server Web Server中文名称叫网页服务器或web服务器.WEB服务器也称为WWW(WORLD WIDE WEB)服务器,主要功能是提供网上信息浏览服务.Web服务器可以解析( ...
- Kali WSL折腾笔记-在Windows10上使用Kali子系统
前言 Windows10在发布WSL(Windows Subsystem for Linux)后经过多次更新,现在使用体验已经比较良好,下面简单记录一下我在安装Kali WSL中遇到的种种问题,为各位 ...
- 二进制32位转十进制int
public class BinaryToDecimal { public static int BinaryToDecimal(int binaryNumber){ int decimal = 0; ...
- JAVA对mysql的基本操作
一.了解几个概念(了解) 1.DriverManager 1)必须知道它是管理数据库的所有驱动程序 2)它的所有方法都是静态的,其中最重要的是getConnection()方法,我们可以通过它获取一个 ...
- ios 传递JSON串过去 前面多了个等号
先说下我的问题 后台让我这边把请求的参数弄成一个实体转化成 json 串放body里传给他,当然header也有设置,提前设置好了, 但是后来了解 所谓的把实体转成json串的本质就是先把实体用run ...