神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
author: Toby,项目合作QQ:231469242
https://www.youtube.com/watch?v=lAaCeiqE6CE&list=PLXO45tsB95cJ0U2DKySDmhRqQI9IaGxck
人工神经网络 VS 生物神经网络
两者是不一样的
生物神经网络是大自然经过千亿年进化而成,目前最先进人工智能神经网络无法达到
人工神经网络 :通过正反馈和负反馈创建或删除神经元
生物神经网络 :通过刺激产生新的链接,信号通过新的链接传递产生反馈,
目前最先进人工智能神经网络无法模拟生物神经网络
卷积神经网络 CNN (深度学习)应用:
图片识别,语音识别,药物发现
神经网络原理:hidden layer是通过函数传递值
了解神经网络,必须了解线性代数
神经网络对数字识别是一层层分解
https://blog.csdn.net/gamer_gyt/article/details/51255448
scikit-learn博主使用的是0.17版本,是稳定版,当然现在有0.18发行版,两者还是有区别的,感兴趣的可以自己官网上查看
scikit-learn0.17(and 之前)上对于Neural Network算法 的支持仅限于 BernoulliRBM
scikit-learn0.18上对于Neural Network算法有三个 neural_network.BernoulliRBM ,neural_network.MLPClassifier,neural_network.MLPRgression
Multi-layer Perceptron 多层感知机
MLP是一个监督学习算法,图1是带一个隐藏层的MLP模型
具体可参考:点击阅读
1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)
多层向前神经网络组成部分
输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)
3:设计神经网络结构
4:算法验证——交叉验证法(Cross- Validation)
神经网络优点和缺点
优点:大数据高效,处理复杂模型,处理多维度数据,灵活快速
缺点:数据需要预处理
代替:TensorFlow,Keras
python sklearn建模处理乳腺癌细胞分类器
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 1 11:49:50 2018 @author: Toby,项目合作QQ:231469242
神经网络
"""
#Multi-layer Perceptron 多层感知机
from sklearn.neural_network import MLPClassifier
#标准化数据,否则神经网络结果不准确,和SVM类似
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt
mglearn.plots.plot_logistic_regression_graph()
mglearn.plots.plot_single_hidden_layer_graph() cancer=load_breast_cancer()
x_train,x_test,y_train,y_test=train_test_split(cancer.data,cancer.target,stratify=cancer.target,random_state=42) mlp=MLPClassifier(random_state=42)
mlp.fit(x_train,y_train)
print("neural network:")
print("accuracy on the training subset:{:.3f}".format(mlp.score(x_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp.score(x_test,y_test))) scaler=StandardScaler()
x_train_scaled=scaler.fit(x_train).transform(x_train)
x_test_scaled=scaler.fit(x_test).transform(x_test) mlp_scaled=MLPClassifier(max_iter=1000,random_state=42)
mlp_scaled.fit(x_train_scaled,y_train)
print("neural network after scaled:")
print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test))) mlp_scaled2=MLPClassifier(max_iter=1000,alpha=1,random_state=42)
mlp_scaled.fit(x_train_scaled,y_train)
print("neural network after scaled and alpha change to 1:")
print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test))) plt.figure(figsize=(20,5))
plt.imshow(mlp.coefs_[0],interpolation="None",cmap="GnBu")
plt.yticks(range(30),cancer.feature_names)
plt.xlabel("columns in weight matrix")
plt.ylabel("input feature")
plt.colorbar()
python信用评分卡建模(附代码,博主录制)
神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)的更多相关文章
- 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...
- 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 机器学习公开课笔记(4):神经网络(Neural Network)——表示
动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网 ...
- UML类建模(强烈推荐-思路很清晰)
UML类建模(强烈推荐-思路很清晰) 2016年10月23日 15:17:47 mbshqqb 阅读数:2315 标签: uml面向对象设计模式 更多 个人分类: 面向对象程序设计 UML的构造快 ...
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 因子分析factor analysis_spss运用_python建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 卷积神经网络CNN的原理(一)---基本概念
什么是卷积神经网络呢?这个的确是比较难搞懂的概念,特别是一听到神经网络,大家脑海中第一个就会想到复杂的生物学,让人不寒而栗,那么复杂啊.卷积神经网络是做什么用的呢?它到底是一个什么东东呢? 卷积神经网 ...
- 机器学习公开课笔记(5):神经网络(Neural Network)——学习
这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间在讲如何计算误差项$\delta$,如何计算 ...
- 卷积神经网络CNN的原理(三)---代码解析
卷积神经网络在几个主流的神经网络开源架构上面都有实现,我这里不是想实现一个自己的架构,主要是通过分析一个最简单的卷积神经网络实现代码,来达到进一步的加深理解卷积神经网络的目的. 笔者在github上找 ...
随机推荐
- Spring AOP 整理笔记
一.AOP概念 AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术. 利用AOP可以对业务逻辑的各 ...
- 使用Log4Net进行错误日志记录
http://blog.csdn.net/zdw_wym/article/details/48802821
- windows2012R2安装SQL2005详情!
用友T3软件报错单据的时候提示1105数据库错误 原因分析:客户使用的是sql2005 express的数据库,账套的物理文件达到了4G. 只能重装SQL的版本,but.... 在window2012 ...
- c/c++ 多线程 ubuntu18.04 boost编译与运行的坑
多线程 boost编译与运行的坑 背景:因为要使用boost里的多线程库,所以遇到了下面的坑. 系统版本:ubuntu18.04 一,安装boost 1,去boost官网下载 boost_1_XX_0 ...
- VS2017 community版使用码云(gitee)的一些过程,看图学习,傻瓜式教程
首先你得有一个gitee账号,VS2017IDE开发工具 第一步,打开VS2017,点击菜单栏上->工具->扩展与更新,如图 然后点击 联机 然后输入 gitee 回车搜索 一定要选择我圈 ...
- Linux新手随手笔记1.6
RAID磁盘冗余阵列 1.I/O 速度 2.数据安全性 RAID 0 负载均衡.速度乘以二,但是数据安全性不行,任何一块盘损坏数据都会丢失. RAID 1 安全性性提升2倍,任何一个损坏另一个都有 ...
- 人生第一个过万 Star 的 github 项目诞生
写 Spring Boot 开源项目走入第三个年头,终于有一个开源项目要破万 Star 了,请各位读者大人批评指正. Spring Boot 文章 2016年,我开始学习 Spring Boot 的时 ...
- Characterization of Dynkin diagrams
Nowadays, I am reading D.J.Benson's nice book, volume I of Representations and cohomology. I found i ...
- Mysql数据库引擎介绍--转载
引用博文链接:https:/www.cnblogs.com/zhangjinghe/p/7599988.html MYSQL数据库引擎区别详解 数据库引擎介绍 MySQL数据库引擎取决于MySQL在安 ...
- windows 监控
监控time_wait状态tcp/ip连接 > netstat -an | findstr "TIME_WAIT" 如果监控此值发现量比较大,且有类似socketExcept ...