神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
author: Toby,项目合作QQ:231469242
https://www.youtube.com/watch?v=lAaCeiqE6CE&list=PLXO45tsB95cJ0U2DKySDmhRqQI9IaGxck
人工神经网络 VS 生物神经网络
两者是不一样的
生物神经网络是大自然经过千亿年进化而成,目前最先进人工智能神经网络无法达到
人工神经网络 :通过正反馈和负反馈创建或删除神经元
生物神经网络 :通过刺激产生新的链接,信号通过新的链接传递产生反馈,
目前最先进人工智能神经网络无法模拟生物神经网络

卷积神经网络 CNN (深度学习)应用:
图片识别,语音识别,药物发现

神经网络原理:hidden layer是通过函数传递值

了解神经网络,必须了解线性代数


神经网络对数字识别是一层层分解

https://blog.csdn.net/gamer_gyt/article/details/51255448
scikit-learn博主使用的是0.17版本,是稳定版,当然现在有0.18发行版,两者还是有区别的,感兴趣的可以自己官网上查看
scikit-learn0.17(and 之前)上对于Neural Network算法 的支持仅限于 BernoulliRBM
scikit-learn0.18上对于Neural Network算法有三个 neural_network.BernoulliRBM ,neural_network.MLPClassifier,neural_network.MLPRgression
Multi-layer Perceptron 多层感知机
MLP是一个监督学习算法,图1是带一个隐藏层的MLP模型
具体可参考:点击阅读
1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)
多层向前神经网络组成部分
输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)
3:设计神经网络结构
4:算法验证——交叉验证法(Cross- Validation)
神经网络优点和缺点
优点:大数据高效,处理复杂模型,处理多维度数据,灵活快速
缺点:数据需要预处理
代替:TensorFlow,Keras

python sklearn建模处理乳腺癌细胞分类器
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 1 11:49:50 2018 @author: Toby,项目合作QQ:231469242
神经网络
"""
#Multi-layer Perceptron 多层感知机
from sklearn.neural_network import MLPClassifier
#标准化数据,否则神经网络结果不准确,和SVM类似
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt
mglearn.plots.plot_logistic_regression_graph()
mglearn.plots.plot_single_hidden_layer_graph() cancer=load_breast_cancer()
x_train,x_test,y_train,y_test=train_test_split(cancer.data,cancer.target,stratify=cancer.target,random_state=42) mlp=MLPClassifier(random_state=42)
mlp.fit(x_train,y_train)
print("neural network:")
print("accuracy on the training subset:{:.3f}".format(mlp.score(x_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp.score(x_test,y_test))) scaler=StandardScaler()
x_train_scaled=scaler.fit(x_train).transform(x_train)
x_test_scaled=scaler.fit(x_test).transform(x_test) mlp_scaled=MLPClassifier(max_iter=1000,random_state=42)
mlp_scaled.fit(x_train_scaled,y_train)
print("neural network after scaled:")
print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test))) mlp_scaled2=MLPClassifier(max_iter=1000,alpha=1,random_state=42)
mlp_scaled.fit(x_train_scaled,y_train)
print("neural network after scaled and alpha change to 1:")
print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test))) plt.figure(figsize=(20,5))
plt.imshow(mlp.coefs_[0],interpolation="None",cmap="GnBu")
plt.yticks(range(30),cancer.feature_names)
plt.xlabel("columns in weight matrix")
plt.ylabel("input feature")
plt.colorbar()



python信用评分卡建模(附代码,博主录制)

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)的更多相关文章
- 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...
- 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 机器学习公开课笔记(4):神经网络(Neural Network)——表示
动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网 ...
- UML类建模(强烈推荐-思路很清晰)
UML类建模(强烈推荐-思路很清晰) 2016年10月23日 15:17:47 mbshqqb 阅读数:2315 标签: uml面向对象设计模式 更多 个人分类: 面向对象程序设计 UML的构造快 ...
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 因子分析factor analysis_spss运用_python建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 卷积神经网络CNN的原理(一)---基本概念
什么是卷积神经网络呢?这个的确是比较难搞懂的概念,特别是一听到神经网络,大家脑海中第一个就会想到复杂的生物学,让人不寒而栗,那么复杂啊.卷积神经网络是做什么用的呢?它到底是一个什么东东呢? 卷积神经网 ...
- 机器学习公开课笔记(5):神经网络(Neural Network)——学习
这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间在讲如何计算误差项$\delta$,如何计算 ...
- 卷积神经网络CNN的原理(三)---代码解析
卷积神经网络在几个主流的神经网络开源架构上面都有实现,我这里不是想实现一个自己的架构,主要是通过分析一个最简单的卷积神经网络实现代码,来达到进一步的加深理解卷积神经网络的目的. 笔者在github上找 ...
随机推荐
- vue input输入框长度限制
今天在开发登录页时,需要设置登录输入框的长度,输入类型为number <input type="number" maxlength="11" placeh ...
- Python-函数小结
原文出处,如有侵权,请联系删除. 用户自定义.py文件 如果你已经把my_abs()的函数定义保存为abstest.py文件了,那么,可以在该文件的当前目录下启动Python解释器,用from abs ...
- MyDAL - 引用类型对象 .DeepClone() 深度克隆[深度复制] 工具 使用
索引: 目录索引 一.API 列表 .DeepClone() 用于 Model / Entity / ... ... 等引用类型对象的深度克隆 特性说明 1.不需要对对象做任何特殊处理,直接 .Dee ...
- Linq语法常见普通语法
闲言碎语 近期比较忙,但还是想写点什么,就分享一些基础的知识给大家看吧,希望能帮助一些linq新手,如果有其它疑问,可以进右上角群,进行交流探讨,谢谢. 开门见山 读这篇文章之前,我先说下,每一种搜索 ...
- 事务的四大特性(ACID):
事务的四大特性(ACID): 1.原子性(Atomicity): 事务中所有操作是不可再分割的原子单元.事务中所有操作要么都执行成功,要么都执行失败. 2.一致性(Consistency): 事 ...
- c/c++ 多线程 ubuntu18.04 boost编译与运行的坑
多线程 boost编译与运行的坑 背景:因为要使用boost里的多线程库,所以遇到了下面的坑. 系统版本:ubuntu18.04 一,安装boost 1,去boost官网下载 boost_1_XX_0 ...
- Linux Mint如何安装“微信、QQ、迅雷、WPS办公软件”等国内上瘾软件
很多小伙伴都用ubuntu或者Linux Mint,但由于已经习惯了让人成瘾的国产软件,比如迅雷,qq,微信等,其实我们应该培养更为健康的上网习惯,这些软件不是非用不可,但如果你不用不行, 那么也是有 ...
- @EnableFeignClients 注解
feignClents在spring容器里找不到的原因 当使用的feignClents 来自引用别的工程时,需要指定包名,如果不指定就算使用ComponentScan 扫描也不行 import org ...
- vue nextTick使用
Vue nextTick使用 vue生命周期 原因是在created()钩子函数执行的时候DOM 其实并未进行任何渲染,而此时进行DOM操作无异于徒劳,所以此处一定要将DOM操作的js代码放进Vue. ...
- Docker镜像仓库清理的探索之路
用友云开发者中心是基于Docker容器进行微服务架构应用的落地与管理.相信各位同学在使用的过程中,会发现随着Docker镜像的增多,占用磁盘空间也约来越多.这时我们需要清理私有镜像仓库中不需要的镜像. ...
