P4211 [LNOI2014]LCA

链接

分析:

  首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和。

  对于多次询问,要么考虑有把询问离线,省去每次询问的复杂度,多个一起处理,要么做到优化掉查询。

  这里发现求deep和的过程不能在省了,于是可以差分询问,枚举右端点,然后查询所有1到这个点的和。

  而第一步的操作可以树链剖分完成。(并且查询的是一个区间,这也保证了这样做可行)

  复杂度$O(nlog^2n)$

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define pa pair<int,int>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = ;
struct Edge{ int to, nxt; } e[N << ];
int head[N], sum[N << ], tag[N << ], fa[N], siz[N], son[N], bel[N], xl[N], ans[N];
int En, Index, n;
vector< pa > Que[N]; inline void add_edge(int u,int v) {
++En; e[En].to = v, e[En].nxt = head[u]; head[u] = En;
}
inline void pushdown(int rt,int len) {
sum[rt << ] += (len - (len / )) * tag[rt];
sum[rt << | ] += (len / ) * tag[rt];
tag[rt << ] += tag[rt];
tag[rt << | ] += tag[rt];
tag[rt] = ;
}
void update(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) {
tag[rt] ++; (sum[rt] += r - l + ) %= mod; return ;
}
if (tag[rt]) pushdown(rt, r - l + );
int mid = (l + r) >> ;
if (L <= mid) update(l, mid, rt << , L, R);
if (R > mid) update(mid + , r, rt << | , L, R);
sum[rt] = (sum[rt << ] + sum[rt << | ]) % mod;
}
int query(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) return sum[rt];
if (tag[rt]) pushdown(rt, r - l + );
int mid = (l + r) >> , res = ;
if (L <= mid) res = (res + query(l, mid, rt << , L, R)) % mod;
if (R > mid) res = (res + query(mid + , r, rt << | , L, R)) % mod;
return res;
}
void dfs1(int u) {
siz[u] = ;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
dfs1(v);
siz[u] += siz[v];
if (!son[u] || siz[son[u]] < siz[v]) son[u] = v;
}
}
void dfs2(int u,int top) {
bel[u] = top;
xl[u] = ++Index;
if (!son[u]) return ;
dfs2(son[u], top);
for (int i = head[u]; i; i = e[i].nxt)
if (e[i].to != son[u]) dfs2(e[i].to, e[i].to);
}
void add(int x) {
while (x) {
update(, n, , xl[bel[x]], xl[x]);
x = fa[bel[x]];
}
}
int query(int x) {
int ans = ;
while (x) {
ans = (ans + query(, n, , xl[bel[x]], xl[x])) % mod;
x = fa[bel[x]];
}
return ans;
}
int main() {
n = read();int m = read();
for (int i = ; i <= n; ++i) {
fa[i] = read() + ;
add_edge(fa[i], i);
}
dfs1();
dfs2(, );
for (int i = ; i <= m; ++i) {
int l = read() + , r = read() + , z = read() + ;
Que[r].push_back(pa(z, i));
Que[l - ].push_back(pa(z, -i));
}
for (int i = ; i <= n; ++i) {
add(i);
for (int sz = Que[i].size(), j = ; j < sz; ++j) {
if (Que[i][j].second < ) ans[-Que[i][j].second] -= query(Que[i][j].first);
else ans[Que[i][j].second] += query(Que[i][j].first);
}
}
for (int i = ; i <= m; ++i) printf("%d\n", (ans[i] + mod) % mod);
return ;
}

P4211 [LNOI2014]LCA的更多相关文章

  1. P4211 [LNOI2014]LCA LCT

    P4211 [LNOI2014]LCA 链接 loj luogu 思路 多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\) 可以转化成l到r上的点到根 ...

  2. 洛谷 P4211 [LNOI2014]LCA 解题报告

    [LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...

  3. 洛谷 P4211 [LNOI2014]LCA (树链剖分+离线)

    题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定 ...

  4. Luogu P4211 [LNOI2014]LCA

    我去这道题的Luogu评级是假的吧,这都算黑题. 我们首先考虑把操作离线不强制在线的题目离线一下一般都要方便些 考虑差分,我们用\(f(x)\)表示\([1,x]\)之间的点与\(z\)的答案,那么显 ...

  5. 并不对劲的bzoj3626:loj2558:p4211:[LNOI2014]LCA

    题目大意 有一棵有\(n\)(\(n\leq5*10^4\))个点的树,\(q\)(\(q\leq5*10^4\))次询问,每次给出\(l,r,x\)表示询问所有编号在\([l,r]\)的点与点\(x ...

  6. 洛谷$P4211\ [LNOI2014]\ LCA$ 树链剖分+线段树

    正解:树剖+线段树 解题报告: 传送门$QwQ$ 看到$dep[lca]$啥的就想到之前托腮腮$CSP$模拟$D1T3$的那个套路,,, 然后试下这个想法,于是$dep[lca(x,y)]=\sum_ ...

  7. [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解

    前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...

  8. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  9. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

随机推荐

  1. swift中,Optional、?与!之间的关系

    swift中,Optional.?与!之间的关系 Optional <ClassName> 与 ClassName? 等价 对 ClassName! 强制取值会导致崩溃(如果对象为nil时 ...

  2. [C++] 用Xcode来写C++程序[1] 新建C++项目工程

    用Xcode来写C++程序[1] 新建C++项目工程 第一节从新建工程并编译C++源码开始 新建工程 源码: // // main.cpp // YeHelloWorld // // Created ...

  3. SecureCRT ssh连接linux操作系统(解决Ubutu密钥交换失败的问题)

    我们可以使用终端软件SecureCRT 去连接linux操作系统(该SecureCRT服务走端口22,协议是ssh(类似apache走http协议,端口80)),SSH 为 Secure Shell ...

  4. Build path entry is missing: config 引起的 The project: configwhich is referenced by the classpath, does not exist.

    运行Junit的时候报错, The project: XXXX which is referenced by the classpath, does not exist. 在Java Build Pa ...

  5. Linux----CentOS-7搭建免流服务器(iOS 端)

    本次实验采用腾讯云服务器:https://cloud.tencent.com/ 大学生身份的可以看看有没有什么活动购买 其他身份的78一个月 关于腾讯云服务器的使用可以看看腾讯云的使用手册 本博客涉及 ...

  6. 安装zabbix3.4的过程(一)

    目录 zabbix服务端安装(centos7.4) zabbix客户端安装 (centos6.9) 注释:本次安装为官方推荐的yum安装方式,如果需要编译安装,请查看下边的博文: 博文地址:https ...

  7. jenkins 安卓打包生成二维码下载

    先来张图看看吧 构思 jenkins gradle 打包apk文件,python myqr 模块生成二维码 放入nginx 访问图片的路径,apk安装包放在 nginx 下载目录. 环境 centos ...

  8. Java NIO(一)I/O模型概述

    基本概念讲述 什么是同步? 同步就是:如果有多个任务或者事件要发生,这些任务或者事件必须逐个地进行,一个事件或者任务的执行会导致整个流程的暂时等待,这些事件没有办法并发地执行. 什么是异步? 异步就是 ...

  9. 【原创】大叔经验分享(52)ClouderaManager修改配置报错

    Cloudera Manager中修改配置可能报错: Incorrect string value: '\xE7\xA8\x8B\xE5\xBA\x8F...' for column 'MESSAGE ...

  10. spring boot集成dubbo

    spring-boot-start-dubbo spring-boot-start-dubbo,让你可以使用spring-boot的方式开发dubbo程序.使dubbo开发变得如此简单. 如何使用 1 ...