python之GIL(Global Interpreter Lock)
一 介绍
'''
定义:
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management is not thread-safe. (However, since the GIL
exists, other features have grown to depend on the guarantees that it enforces.)
'''
结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
首先需要明确的一点是GIL
并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL
归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL
这篇文章透彻的剖析了GIL对python多线程的影响,强烈推荐看一下:http://www.dabeaz.com/python/UnderstandingGIL.pdf
二 GIL介绍
GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。
保护不同的数据的安全,就应该加不同的锁。
要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程
'''
#验证python test.py只会产生一个进程------------启动第Python这个进程
#test.py内容
import os,time
print(os.getpid())
time.sleep(1000)
'''
python3 test.py
#在windows下
tasklist |findstr python #可以看到Python这个进程的pid号
#在linux下
ps aux |grep python
验证python test.py只会产生一个进程
在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,可以结合下图进行理解:
#1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启三个线程然后target都指向该代码,能访问到意味着就是可以执行。 #2 所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。
#-------------------------------------------------------------------------而访问到解释器代码首先就要拿到全局解释器锁即GIL锁
综上:
如果多个线程的target=work,那么执行流程是
多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码(也就是Python解释器的代码)去执行
解释器的代码是所有线程共享的(同一进程内的数据是被所有线程共享的),所以垃圾回收线程也可能访问到解释器的代码而去执行,这就导致了一个问题:对于同一个数据100,可能线程1执行x=100的同时,而垃圾回收执行的是回收100的操作,解决这种问题没有什么高明的方法,就是加锁处理,如下图的GIL,保证python解释器同一时间只能执行一个任务的代码
同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码
三 GIL与Lock(互斥锁)
GIL保护的是解释器级的数据,保护用户自己的数据则需要自己加锁(如互斥锁)处理,如下图
四 GIL与多线程
有了GIL的存在,同一时刻同一进程中只有一个线程被执行
进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势,也就是说python没用了,事实并非如此!
要解决这个问题,我们需要在几个点上达成一致:
#1. cpu到底是用来做计算的,还是用来做I/O的?---------cpu是用来做计算的 #2. 多cpu,意味着可以有多个核并行(真正意义的同时运行)完成计算,所以多核提升的是计算性能 #3. 每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处
一个工人相当于cpu,此时计算相当于工人在干活(计算),I/O阻塞相当于为工人干活提供所需原材料的过程,工人干活的过程中如果没有原材料了,则工人干活的过程需要停止,直到等待原材料的到来。
如果你的工厂干的大多数任务都要有准备原材料的过程(I/O密集型),那么你有再多的工人,意义也不大,还不如一个人,在等材料的过程中让工人去干别的活,
反过来讲,如果你的工厂原材料都齐全,那当然是工人(cpu)越多,效率越高
结论:
对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用
当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地
重点:
我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
方案一:开启四个进程
方案二:一个进程下,开启四个线程 单核情况下,分析结果:采用开启多线程的方式
如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜(对于单核都是在单个cpu来回切)
如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜 多核情况下,分析结果:根据任务是计算密集型还是I/O密集型
如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜
如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜(指的是在一个进程下开启多个线程) 结论:现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),
但是,对于IO密集型的任务效率还是有显著提升的。
五 多线程性能测试
from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=0
for i in range(100000000):
res*=i if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(4):
p=Process(target=work) #耗时5s多
p=Thread(target=work) #耗时18s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
计算密集型:多进程效率高
from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
time.sleep(2)
print('===>') if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(400):
# p=Process(target=work) #耗时12s多,大部分时间耗费在创建进程上
p=Thread(target=work) #耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
I/O密集型:多线程效率高
应用:
多线程用于IO密集型,如socket,爬虫,web
多进程用于计算密集型,如金融分析
python之GIL(Global Interpreter Lock)的更多相关文章
- Python3 GIL(Global Interpreter Lock)与多线程
GIL(Global Interpreter Lock)与多线程 GIL介绍 GIL与Lock GIL与多线程 多线程性能测试 在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线 ...
- python GIL(Global Interpreter Lock)
一 介绍 ''' 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple nati ...
- Python解释器是单线程应用 IO 密集型 计算密集型 GIL global interpreter lock
[Python解释器是单线程应用] [任意时刻,仅执行一个线程] 尽管Python解释器中可以运行多个线程,但是在任意给定的时刻只有一个线程会被解释器执行. [GIL锁 保证同时只有一个线程运行] 对 ...
- 基于Cpython的 GIL(Global Interpreter Lock)
一 介绍 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native t ...
- GIL - global interpreter lock
python是一个解释型语言,但是可以使用多个解释器.比如C++,但是可以用不同的编译器来编译成可执行代码.有名的编译器例如GCC,INTEL C++,Visual C++等.Python也一样,同样 ...
- Python GIL(Global Interpreter Lock)
一,介绍 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native t ...
- python之GIL官方文档 global interpreter lock 全局解释器锁
0.目录 2. 术语 global interpreter lock 全局解释器锁3. C-API 还有更多没有仔细看4. 定期切换线程5. wiki.python6. python.doc FAQ ...
- Python GIL(Global Interpreter Lock)
一.介绍 In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threa ...
- 理解Global interpreter lock
Global interpreter lock (GIL) is a mechanism used in computer language interpreters to synchronize ...
随机推荐
- 工具类-vim在shell中卡死的情况
time:2015/11/35 在xshell下面使用vim编辑,有时候会出现突然卡死的情况.但是如果重新开一个终端的话,打开文件又是一大堆问题,今天又碰到了,搜了一下就找到一个帮助了[1] 原因:按 ...
- (转)图形学理论知识 BRDF 双向反射分布函数(Bidirectional Reflectance Distribution Function)
BRDF理论 BRDF表示的是双向反射分布函数(Bidirectional Reflectance Distribution Function),它描述了光线如何在物体表面进行反射,可以用来描述材质属 ...
- javascript unshift()和shift()
<html> <head> <meta http-equiv="Content-Type" content="text/html; char ...
- linux下压缩与解压缩
版权声明: https://blog.csdn.net/zdp072/article/details/27584773 [ tar具体解释: ] -c: 建立压缩档案 -x:解压 -t:查看内容 -r ...
- numpy的array数据类型(创建)
import numpy as np # 创建 # 创建一维数组 a = np.array([1, 2, 3]) print(a) ''' [1 2 3] ''' # 创建多维数组 b = np.ar ...
- ansible-playbook快速入门
一.yaml语法: 1. yaml语法编写 1.1 同层级的字段通过相同缩进表示 1.2 map结构里面key/value用‘:’来分隔 1.3 key/value可以同行写,也可以换行写,换行写必须 ...
- git 代码比较工具,分支冲突解决
下载地址:https://www.scootersoftware.com/BCompare-4.2.9.23626.exe
- Kafka设计解析(十五)Kafka controller重设计
转载自 huxihx,原文链接 Kafka controller重设计 目录 一.Controller是做什么的 二.Controller当前设计 三.Controller组成 四.Controlle ...
- Ajax的async属性
Ajax请求中的async:false/true的作用 官方的解释是:http://api.jquery.com/jQuery.ajax/ async Boolean Default: true By ...
- C语言程序设计I—第九周教学
第九周教学总结(28/10-03/11) 教学内容 第三章 分支结构 3.3 查询自动售货机中商品的价格 课前准备 在蓝墨云班课发布资源: PTA:2018秋第九周作业1 3.3 分享码:530571 ...