3235: [Ahoi2013]好方的蛇

链接

分析:

  可以求出以每个点为顶点的满足条件的矩形有多少个,单调栈求。设为sum。

  然后对这个数组进行二维前缀和,可以求出每个矩阵内,以右下角、左下角为端点的矩形有多少个,分别设为f,g。

  然后可以枚举一个点(x,y),计算有多少个矩形的左上角是这个点,然后分别计算x上面的矩形,和y左面的矩形,与它不相交。此时一个每个矩形都和它左上角右上角的矩形计算了两次,减去即可。

  调来调去,最后发现模数多写了个0。。。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int mod = , N = ;
int a[N][N], f[N][N], g[N][N], u[N];
struct Node{ int x, sum, len; } sk[N];
char s[N]; int main() {
int n = read();
for (int i = ; i <= n; ++i) {
scanf("%s", s + );
for (int j = ; j <= n; ++j) a[i][j] = s[j] == 'B';
}
int top = , sum = , ans = ;
memset(u, , sizeof(u));
for (int k, i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = ; j <= n; ++j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
f[i][j] = f[i - ][j] + f[i][j - ] - f[i - ][j - ] + sum; f[i][j] %= mod;
sum += a[i][j];
}
} memset(u, , sizeof(u));
for (int k, i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = n; j; --j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
g[i][j] = g[i - ][j] + g[i][j + ] - g[i - ][j + ] + sum; g[i][j] %= mod;
sum += a[i][j];
}
} memset(u, , sizeof(u));
for (int k, i = n; i; --i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = n; j; --j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
ans += sum * f[n][j - ] + sum * f[i - ][n] - sum * f[i - ][j - ]; ans %= mod;
sum += a[i][j];
}
} memset(u, , sizeof(u));
for (int k, i = n; i; --i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = ; j <= n; ++j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
ans = (ans - sum * g[i - ][j + ] % mod + mod) % mod;
sum += a[i][j];
}
}
cout << (ans + mod) % mod;
return ;
}

3235: [Ahoi2013]好方的蛇的更多相关文章

  1. 【BZOJ 3235】 3235: [Ahoi2013]好方的蛇 (单调栈+容斥原理)

    3235: [Ahoi2013]好方的蛇 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 187  Solved: 95 Description 有一天, ...

  2. BZOJ 3235: [Ahoi2013]好方的蛇

    BZOJ 3235: [Ahoi2013]好方的蛇 标签(空格分隔): OI-BZOJ OI-DP OI-容斥原理 Time Limit: 10 Sec Memory Limit: 64 MB Des ...

  3. BZOJ3235 [Ahoi2013]好方的蛇 【单调栈 + dp】

    题目链接 BZOJ3235 题解 求出每个点为顶点,分别求出左上,左下,右上,右下的矩形的个数\(g[i][j]\) 并预处理出\(f[i][j]\)表示点\((i,j)\)到四个角的矩形内合法矩形个 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. 基于AT89C51单片机的贪吃蛇电子游戏(仿真)

    有关贪吃蛇的历史发展可以看一下这个网址,贪吃蛇最初的设计和现在并不相同..http://www.techweb.com.cn/internet/2013-02-21/1278055.shtml 该项目 ...

  6. 小菜学习Winform(一)贪吃蛇

    前言 说到贪吃蛇,大家可能小时候都玩过,小菜最近在整理Winfrom的学习系列,那我觉得有兴趣才会有学习,就从这个小游戏讲起吧. 实现 其实我刚开始学习编程的时候,感觉写个贪吃蛇的程序会很难,因为涉及 ...

  7. [AHOI2013]找硬币(搜索)

    [Ahoi2013]找硬币 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 348  Solved: 114[Submit][Status] Descri ...

  8. 使用TypeScript实现简单的HTML5贪吃蛇游戏

    TypeScript是一种由微软开发的自由和开源的编程语言.它是JavaScript的一个超集,而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程.安德斯·海尔斯伯格,C#的首席架构师,已 ...

  9. BZOJ 3233: [Ahoi2013]找硬币( dp )

    dp(x)表示最大面值为x时需要的最少硬币数. 枚举x的质因数p,  dp(x) = min( dp(x/p) - (p-1) * sigma[a[i]/x] ). ----------------- ...

随机推荐

  1. [UI] 精美UI界面欣赏[4]

    精美UI界面欣赏[4]

  2. 利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率

    1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...

  3. windows 下安装nodejs 要怎么设置环境变量

    windows 下安装nodejs 了,也安装了npm, 但是有时候切不能直接用request(‘ws’)这一类的东西.我觉得是确实环境变量或其他设置有问题,能否给个完整的设置方案: 要设置两个东西, ...

  4. rman恢复方案和oracle异机恢复

    这篇文章主要介绍了rman恢复方案和oracle异机恢复,需要的朋友可以参考下 注:①恢复的前提是已经做好备份②完全恢复数据库是数据库遇到故障,在恢复时候没有丢失任何已经提交事物数据的恢复不完全恢复数 ...

  5. python处理数据(二)

    处理PDF文件 PyPDF2简介 作为 PDF 工具包构建的纯 python 库. 它可以:提取文档信息(标题,作者,... ...)一页一页地分割文件一页一页地合并文件裁剪页面将多个页面合并成一个页 ...

  6. Java虚拟机16:Java内存模型

    什么是Java内存模型 Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各种硬件和操作系统的访问差异,以实现让Java程序在各种平台下都能达到一致 ...

  7. AbstractApplicationContext 笔记

    一.这个类的属性 public abstract class AbstractApplicationContext extends DefaultResourceLoader implements C ...

  8. KVOController原理解析

    1.使用类似动态代理的模式和消息派发中枢模式实现整个架构: 2.使用NSMapTable和NSHashTable进行切面信息的增删查维护:主要用于去重和查看是否存在. 实现方式 消息流 KVOCont ...

  9. Operating System-Thread(3)用户空间和内核空间实现线程

    http://www.cnblogs.com/Brake/archive/2015/12/02/Operating_System_Thread_Part3.html 本文主要内容: 操作系统用户空间和 ...

  10. Golang Http Server源码阅读

    建议看这篇文章前先看一下net/http文档 http://golang.org/pkg/net/http/ net.http包里面有很多文件,都是和http协议相关的,比如设置cookie,head ...