2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction
The goal of the circular kernel is to offer to the user a large set of functionalities on circles and circular arcs in the plane. All the choices (interface, robustness, representation, and so on) made here are consistent with the choices made in the CGAL kernel, for which we refer the user to the 2D kernel manual.
In this first release, all functionalities necessary for computing an arrangement of circular arcs and these line segments are defined. Three traits classes are provided for the CGAL arrangement package.
circular kernel 的目标是提供一个用于平面圆和圆弧的大量的函数集。本版中,所有计算圆弧和这些线段排列的函数全部提供。三个traits类提供给了这个CGAL的arrangement 包。
2 Software Design
The design is done in such a way that the algebraic concepts and the geometric concepts are clearly separated. Circular_kernel_2
has therefore two template parameters:
- the first parameter must model the CGAL three dimensional
Kernel
concept. The circular kernel derives from it, and it provides all elementary geometric objects like points, lines, circles, and elementary functionality on them. - the second parameter is the algebraic kernel, which is responsible for computations on polynomials and algebraic numbers. It has to be a model of concept
AlgebraicKernelForCircles
. The robustness of the package relies on the fact that the algebraic kernel provides exact computations on algebraic objects.
The circular kernel uses the extensibility scheme presented in the 2D kernel manual (see Section Extensible Kernel). The types of Kernel
are inherited by the circular kernel and some types are taken from the AlgebraicKernelForCircles
parameter. Three new main geometric objects are introduced by Circular_kernel_2
: circular arcs, points of circular arcs (used in particular for endpoints of arcs and intersection points between arcs) and line segments whose endpoints are points of this new type.
In fact, the circular kernel is documented as a concept, CircularKernel
, and two models are provided:
Circular_kernel_2<Kernel,AlgebraicKernelForCircles>
, the basic kernel,- and a predefined filtered kernel
Exact_circular_kernel_2
, that is based on similar techniques asExact_predicates_exact_constructions_kernel
.
设计将代数概念和几何概念截然分开,所以 Circular_kernel_2
类有两个模板参数:
第一个参数必须是CGAL 3 维 kernel概念的模型。本circular kernel 由此概念继承而来, 它提供了所有基本的几何体,包括点、线、圆和它们的基本方程。
第二个参数是代数内核(algebraic kernel),它负责计算多项式和代数数。它必须是AlgebraicKernelForCircles概念的模型。本包的健壮性依赖于代数内核提供的对代数对象的精确计算。
circular kernel 使用2D内核手册中提到的可扩展的scheme(see Section Extensible Kernel)。Kernel的类型由 circular kernel继承,有些类型来自于AlgebraicKernelForCircles参数。三个新的几何对象由 Circular_kernel_2
引入:圆弧(circular arcs),圆弧的点(points of circular arcs,主要用于弧的端点和弧与弧的交点),和端点是圆弧上点的线段( line segments whose endpoints are points of this new type)。
实际上,circular kernel 是一个概念CircularKernel,它提供了2个模型:
Circular_kernel_2<Kernel,AlgebraicKernelForCircles>是基本内核
一个预先定义的过滤内核(filtered kernel)Exact_circular_kernel_2,它是基于与Exact_predicates_exact_constructions_kernel相似的技术。
3 Examples
The first example shows how to construct circles or circular arcs from points, and how to compute intersections between them using the global function.
这个例子展示如何创建一个弧,如何通过全局函数求弧的交点。
File Circular_kernel_2/intersecting_arcs.cpp
The following example shows how to use a functor of the kernel.
下面 例子演示如何使用内核中的一个函子。
File Circular_kernel_2/functor_has_on_2.cpp
4 Design and Implementation History
The first pieces of prototype code were comparisons of algebraic numbers of degree 2, written by Olivier Devillers [1],cgal:dfmt-amafe-02.
Some work was then done in the direction of a "kernel" for CGAL.[1] and the first design emerged in [2].
The code of this package was initially written by Sylvain Pion and Monique Teillaud who also wrote the manual. Athanasios Kakargias had worked on a prototype version of this kernel in 2003. Julien Hazebrouck participated in the implementation in July and August
- The contribution of Pedro Machado Manhães de Castro in summer 2006 improved significantly the efficiency of this kernel. He also added more functionality in 2008.
This work was partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces) and by the IST Programme of the 6th Framework Programme of the EU as a STREP (FET Open Scheme) Project under Contract No IST-006413 (ACS - Algorithms for Complex Shapes).
2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual的更多相关文章
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- 3D Spherical Geometry Kernel( Geometry Kernels) CGAL 4.13 -User Manual
Introduction The goal of the 3D spherical kernel is to offer to the user a large set of functionalit ...
- dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...
- 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual
1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...
- Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual
理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...
- 2D Polygons( Poygon) CGAL 4.13 -User Manual
1 Introduction A polygon is a closed chain of edges. Several algorithms are available for polygons. ...
- Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...
- Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...
- Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual
monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...
随机推荐
- 12-ssm中的description The request sent by the client was syntactically incorrect.
此问题一般是在前端的数据传回是封装成对象失败的情况: 1.对象名不一致: 2.对象的数据类型不一致: 特别注意日期类型的: 如果前端是date数据类型的话: 传入的日期有问题 在pojo类中限定 @D ...
- shell中数组基础语法
数组的基本赋值 arr=(a b c) arr[index]=a 2.常用的两个方法 str=${arr[@]}(数组转化成字符串) len=${#arr[*]}(数组长度) 3.遍历数组的方法 #! ...
- php 输出缓冲 Output Control
关于php的输出缓冲,首先要说明的是什么是缓冲(buffer),比如我们通过记事本在编辑文件的时候,并不是我们输入了内容,系统就会立刻向磁盘中写入数据.只有我们在保存文件后,系统才会向磁盘写入数据.而 ...
- PAT 1057 数零壹 (20)(代码+思路)
1057 数零壹(20 分) 给定一串长度不超过 105 的字符串,本题要求你将其中所有英文字母的序号(字母 a-z 对应序号 1-26,不分大小写)相加,得到整数 N,然后再分析一下 N 的二 ...
- VK Cup 2016 D. Bear and Two Paths 模拟
D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- c++ 自动对象
转自: https://www.cnblogs.com/geloutingyu/p/8034904.html 1.自动对象默认情况下,局部变量的生命期局限于所在函数的每次执行期间.只有当定义它的函数被 ...
- Java 8 Optional 类深度解析
Java 8 Optional 类深度解析 身为一名Java程序员,大家可能都有这样的经历:调用一个方法得到了返回值却不能直接将返回值作为参数去调用别的方法.我们首先要判断这个返回值是否为null,只 ...
- 设计资源:三个精美APP原型例子下载
原型设计是整个产品生产过程中不可或缺的一环,无论你是移动端UI设计师或是网页设计师,原型设计都会让整个设计过程更加轻松.原型是产品概念的具象化,它让每个项目参与者都能查看并提出意见以便在产品发布前日臻 ...
- filter 死循环(tomcat 启动完成 ,自动执行filter.dofilter,导致tomcat 启动超时) , tomcat 启动和 servers 启动 不同
package com.diancai.interceptor; import java.io.IOException; import javax.servlet.Filter; import jav ...
- springmvc 整合数据验证框架 jsr
1.maven <dependency> <groupId>javax.validation</groupId> <artifactId>validat ...