定理1.24 (棣莫弗定理)

对每个实数x和每个正整数n有

基于棣莫弗定理的推论如下:

《A First Course in Abstract Algebra with Applications》-chaper1-数论-棣莫弗定理的更多相关文章

  1. 《A First Course in Abstract Algebra with Applications》-chaper1-数论

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  2. 《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  3. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  4. 线性代数 -- Linear Algebra with Applications

    @.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...

  5. Abstract Algebra chapter 7

    7.7:Encrypt each of the following RSA messages x so that x is divided into blocks of integers of len ...

  6. 浅谈FFT(快速傅里叶变换)

    前言 啊摸鱼真爽哈哈哈哈哈哈 这个假期努力多更几篇( 理解本算法需对一些< 常 用 >数学概念比较清楚,如复数.虚数.三角函数等(不会的自己查去(其实就是懒得写了(¬︿̫̿¬☆) 整理了一 ...

  7. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  8. 数学类杂志SCI2013-2014影响因子

    ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF        2013-20 ...

  9. Mathematics for Computer Graphics

    Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...

随机推荐

  1. whu 1538 - B - Stones II 01背包

    题目链接: http://acm.whu.edu.cn/land/problem/detail?problem_id=1538 Problem 1538 - B - Stones II Time Li ...

  2. SCRUM:第一、二天任务实现情况

    在团队项目“广商百货”的SCRUM项目中我认领的任务: LOGO设计 5.18熬夜完成LOGO设计(投票通过): 设计理念: 1.全矢量图设计,适应各种超大尺寸使用: 2.3D化透视设计,简约视效,也 ...

  3. IT行业的个人见解

    IT这个行业是近代历史上的新新行业,它的就业前景是非常的好的,就业率高,但是这个行业的需求人才精英不是那些半桶水的所谓IT男.我现在学习的是计算机专业中的软件工程目标是成为一名合格的软件工程师,软件工 ...

  4. LR_问题_虚拟用户以进程和线程模式运行的区别

    进程方式和线程方式的优缺点: 如果选择按照进程方式运行, 每个用户都将启动一个mmdrv进程,多个mmdrv进程会占用大量内存及其他系统资源,这就限制了可以在任一负载生成器上运行的并发用户数的数量,因 ...

  5. PHP ini_set

    PHP ini_set用来设置php.ini的值,在函数执行的时候生效,对于虚拟空间来说,很方便,下面为大家介绍下此方法的使用   PHP ini_set用来设置php.ini的值,在函数执行的时候生 ...

  6. Windows 10 正式版原版ISO镜像

    Win10正式版32位简体中文版(含家庭版.专业版)文件名: cn_windows_10_multiple_editions_x86_dvd_6846431.isoSHA1:21B824F402927 ...

  7. 如何处理UIVIew addsubview 不显示subview

    老代码: addsubview不显示uilabel -(UIView *)tableView:(UITableView *)tableView viewForFooterInSection:(NSIn ...

  8. Nagios学习笔记

    1 Nagios功能 1.1  监控工具 1.2  可以监控主机/服务或者资源 1.3  四种状态值 OK,WARNING,CRITICAL,UNKNOWN CPU:90%(CRITICAL),80% ...

  9. AtCoder Regular Contest 081

    C - Make a Rectangle 从大到小贪心即可. # include <bits/stdc++.h> using namespace std; map<int,int&g ...

  10. Power Strings POJ - 2406(next水的一发 || 后缀数组)

    后缀数组专题的 emm.. 就next 循环节../ 有后缀数组也可以做 从小到大枚举长度i,如果长度i的子串刚好是重复了len/i次,应该满足len % i == 0和rank[0] - rank[ ...