python 数据处理中的 LabelEncoder 和 OneHotEncoder
One-Hot 编码即独热编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。这样做的好处主要有:1. 解决了分类器不好处理属性数据的问题; 2. 在一定程度上也起到了扩充特征的作用。
将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。离散特征进行one-hot编码,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。
基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。基于参数的模型或基于距离的模型,都是要进行特征的归一化。Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。
one hot encoding的优点就是它的值只有0和1,不同的类型存储在垂直的空间。缺点就是,当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。
- one hot 编码及数据归一化
- 对于非负数类型编码 利用onehotEncode
- 对于字符以及混合类型编码 利用labelEncode
# 简单来说 LabelEncoder 是对不连续的数字或者文本进行编号
# sklearn.preprocessing.LabelEncoder():标准化标签,将标签值统一转换成range(标签值个数-1)范围内 from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
out: array([0, 0, 3, 2, 1], dtype=int64) #OneHotEncoder 用于将表示分类的数据扩维:
from sklearn.preprocessing import OneHotEncode
ohe = OneHotEncoder()
ohe.fit([[1],[2],[3],[4]])
ohe.transform([[2],[3],[1],[4]]).toarray()
out:array([[ 0., 1., 0., 0.],
[ 0., 0., 1., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
- 源码:
Examples
--------
Given a dataset with three features and four samples, we let the encoder
find the maximum value per feature and transform the data to a binary
one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \
[1, 0, 2]]) # doctest: +ELLIPSIS
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,
handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9])
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])
Examples
--------
`LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are
hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']
- 下面引入scikit learn中的OneHotEncoder的介绍。
一、One-Hot Encoding
二、One-Hot Encoding的处理方法
三、实际的Python代码
- 性别:["male","female"]
- 地区:["Europe","US","Asia"]
- 浏览器:["Firefox","Chrome","Safari","Internet Explorer"]
python 数据处理中的 LabelEncoder 和 OneHotEncoder的更多相关文章
- python 数据处理中各种存储方式里数据类型的转换
自己记录,仅供参考 在数据处理时经常会遇到数据类型不匹配的事情,为了方便查看各种存储方式中数据类型的改变.我把一些自己常用的整理方式记录下来,希望可以为以后数据类型的处理工作提供便利. 数据常用的基本 ...
- Python数据处理PDF
Python数据处理(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1h8a5-iUr4mF7cVujgTSGOA 提取码:6fsl 复制这段内容后打开百度网盘手机A ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- 参考《Python数据处理》中英文PDF+源代码
在实际操作中掌握数据处理方法,比较实用.采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.E ...
- python数据处理技巧二
python数据处理技巧二(掌控时间) 首先简单说下关于时间的介绍其中重点是时间戳的处理,时间戳是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01月01日08时00分00 ...
- Python数据处理pdf (中文版带书签)、原书代码、数据集
Python数据处理 前言 xiii第1 章 Python 简介 11.1 为什么选择Python 41.2 开始使用Python 41.2.1 Python 版本选择 51.2.2 安装Python ...
- Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)
0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...
- 解析Python编程中的包结构
解析Python编程中的包结构 假设你想设计一个模块集(也就是一个"包")来统一处理声音文件和声音数据.通常由它们的扩展有不同的声音格式,例如:WAV,AIFF,AU),所以你可能 ...
- python数据处理书pdf版本|内附网盘链接直接提取|
Python数据处理采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.Excel.XML.J ...
随机推荐
- vue 单向数据流 & 双向绑定
在react中是单向数据绑定,而在vue中的特色是双向数据绑定.但是其实就我个人的理解是: 其实无论是vue还是react其实还是提倡单向数据流去管理状态,这一点在vuex和redux状态管理器上体现 ...
- leetcode easy problem set
*勿以浮沙筑高台* 持续更新........ 题目网址:https://leetcode.com/problemset/all/?difficulty=Easy 1. Two Sum [4m ...
- 模板优化 运用 function 及 外部模板
我们都知道模板是泛型的,但是,它一旦被实例化就会产生一个实例化的副本. 好了,大家应该能够猜到,低效模板和高效模板的差异了 一般的低效模板: 1.泛型实参表达形式多样导致的低效模板 2.多文件引用同一 ...
- shell date time
In Bash: get year-month-day from date DATE=`date +%Y-%m-%d`get year-month-day hour:minute:second fro ...
- 顺序线性表之大整数求和C++实现
顺序线性表之大整数求和 大整数求和伪代码 1.初始化进位标志 flag=0: 2.求大整数 A 和 B 的长度: int aLength = a.GetLength(); int bLength = ...
- 【Trie】【枚举约数】Codeforces Round #482 (Div. 2) D. Kuro and GCD and XOR and SUM
题意: 给你一个空的可重集,支持以下操作: 向其中塞进一个数x(不超过100000), 询问(x,K,s):如果K不能整除x,直接输出-1.否则,问你可重集中所有是K的倍数的数之中,小于等于s-x,并 ...
- 【洛谷】1494:[国家集训队]小Z的袜子【莫队】
P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… ...
- [Cocos2dx] CCCamera照相机 详解
前言 在3D游戏当中,我们经常会使用到照相机这个东西,无论你使用的是哪一款引擎,都会用到,同时,照相机这个东西涉及到的东西比较多,基础知识需要扎实一些才可以. 如何使用 很久之前做项目的时候用到过一次 ...
- Elasticsearch基础分布式架构
写在前面的话:读书破万卷,编码如有神-------------------------------------------------------------------- 参考内容: <Ela ...
- Codeforces Round #234 (Div. 2) B. Inna and New Matrix of Candies SET的妙用
B. Inna and New Matrix of Candies time limit per test 1 second memory limit per test 256 megabytes i ...