UVa 10214 - Trees in a Wood.(欧拉函数)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1155
题意:
在满足|x|≤a,|y|≤b(a≤2000,b≤2000000)的网格中,除了原点之外的整点(即x,y坐标均为整数的点)各种着一棵树。
树的半径可以忽略不计,但是可以相互遮挡。求从原点能看到多少棵树。
设这个值为K,要求输出K/N,其中N为网格中树的总数。
分析:
显然4个坐标轴上各只能看见一棵树,所以可以只数第一象限(即x>0,y>0),答案乘以4后加4。
第一象限的所有x, y都是正整数,能看到(x,y),当且仅当gcd(x,y)=1。
由于a范围比较小,b范围比较大,一列一列统计比较快。
第x列能看到的树的个数等于0<y≤b的数中满足gcd(x,y)=1的y的个数。可以分区间计算。
1≤y≤x:有phi(x)个,这是欧拉函数的定义。
x+1≤y≤2x:也有phi(x)个,因为gcd(x+i,x)=gcd(x,i)。
2x+1≤y≤3x:也有phi(x)个,因为gcd(2x+i,x)=gcd(x,i)。
……
kx+1≤y≤b:直接统计,需要O(x)时间。
代码:
import java.io.*;
import java.util.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int UP = 2000 + 5;
int a, b, phi[] = new int[UP]; void constant() {
phi[1] = 1;
for(int i = 2; i < UP; i++) phi[i] = 0;
for(int i = 2; i < UP; i++) if(phi[i] == 0) {
for(int t = i; t < UP; t += i) {
if(phi[t] == 0) phi[t] = t;
phi[t] = phi[t] / i * (i-1);
}
}
} int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} long black() {
long res = 0;
for(int i = 1; i <= a; i++) {
int k = b / i;
res += k * phi[i];
for(int t = k*i+1; t <= b; t++) {
if(gcd(i,t) == 1) res++;
}
}
return res * 4 + 4;
} void MAIN() {
constant(); // 预处理欧拉函数值
while(true) {
a = cin.nextInt();
b = cin.nextInt();
if(a + b == 0) break;
long all = (2*a+1L) * (2*b+1L) - 1;
System.out.printf("%.7f\n", (double)black() / all);
}
} public static void main(String args[]) { new Main().MAIN(); }
}
UVa 10214 - Trees in a Wood.(欧拉函数)的更多相关文章
- UVA 10214 Trees in a Wood(欧拉函数)
题意:给你a.b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数 题解:首先只需要计算第一象限 ...
- UVA 10214 Trees in a Wood
https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
- UVa 10214 Trees in a Wood. (数论-欧拉函数)
题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- Java中Date与String的相互转换
我们在注册网站的时候,往往需要填写个人信息,如姓名,年龄,出生日期等,在页面上的出生日期的值传递到后台的时候是一个字符串,而我们存入数据库的时候确需要一个日期类型,反过来,在页面上显示的时候,需要从数 ...
- FileReader读取文件
前言:FileReader是一种异步文件读取机制,结合input:file可以很方便的读取本地文件. input:file 在介绍FileReader之前,先简单介绍input的file类型. < ...
- html基础-html简介-第一个网页(1)
今天刚刚开通博客园,把我最近整理的html/css来说一下,对于初学者还是有一定的帮助. 一.先来为大家简单普及以下html (1).html英文即:hypertext markup language ...
- 语义化的HTML及其目的
一.什么是语义化的HTML? 语义化的HTML就是写出的HTML代码,符合内容的结构化(内容语义化),选择合适的标签(代码语义化),能够便于开发者阅读和写出更优雅的代码的同时让浏览器的爬虫和机器很好地 ...
- Strut2开发经验总结
1.如何在html静态页面中使用struts tomcat目录/conf/web.xml 文件中,找到 <servlet-mapping> <servlet-name>jsp& ...
- maven windows环境nexus3.0私服搭建
下载 nexus3.x.x 需要JDK1.8版本到sonatype官网下载开源免费的OSS版本,OSS即为Open Source Software.下载地址:https://www.sonatype. ...
- Pig group用法举例
group语句可以把具有相同键值的数据聚合在一起,与SQL中的group操作有着本质的区别,在SQL中group by字句创建的组必须直接注入一个或多个聚合函数.在Pig Latin中grou ...
- statistics_level 参数的应用
转自 http://blog.csdn.net/zengmuansha/article/details/5149398 statistics_level 参数是oracle9.2开始引入的一个控制系统 ...
- OpenLDAP权限配置
安装好了openldap之后,就是对它进行配置了,其中一项就是设置访问控制,限制普通用户只能修改/访问他们能修改/访问的项.这就是ACL需要做的事情. 设置方法 1.可以将 include行放在/et ...
- c# 多线程之-- System.Threading Timer的使用
作用:每隔多久去执行线程里的方法. class ThreadTimerDemo { static void Main(string[] args) { // Create an AutoResetEv ...