UVa 10214 - Trees in a Wood.(欧拉函数)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1155
题意:
在满足|x|≤a,|y|≤b(a≤2000,b≤2000000)的网格中,除了原点之外的整点(即x,y坐标均为整数的点)各种着一棵树。
树的半径可以忽略不计,但是可以相互遮挡。求从原点能看到多少棵树。
设这个值为K,要求输出K/N,其中N为网格中树的总数。
分析:
显然4个坐标轴上各只能看见一棵树,所以可以只数第一象限(即x>0,y>0),答案乘以4后加4。
第一象限的所有x, y都是正整数,能看到(x,y),当且仅当gcd(x,y)=1。
由于a范围比较小,b范围比较大,一列一列统计比较快。
第x列能看到的树的个数等于0<y≤b的数中满足gcd(x,y)=1的y的个数。可以分区间计算。
1≤y≤x:有phi(x)个,这是欧拉函数的定义。
x+1≤y≤2x:也有phi(x)个,因为gcd(x+i,x)=gcd(x,i)。
2x+1≤y≤3x:也有phi(x)个,因为gcd(2x+i,x)=gcd(x,i)。
……
kx+1≤y≤b:直接统计,需要O(x)时间。
代码:
import java.io.*;
import java.util.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int UP = 2000 + 5;
int a, b, phi[] = new int[UP]; void constant() {
phi[1] = 1;
for(int i = 2; i < UP; i++) phi[i] = 0;
for(int i = 2; i < UP; i++) if(phi[i] == 0) {
for(int t = i; t < UP; t += i) {
if(phi[t] == 0) phi[t] = t;
phi[t] = phi[t] / i * (i-1);
}
}
} int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} long black() {
long res = 0;
for(int i = 1; i <= a; i++) {
int k = b / i;
res += k * phi[i];
for(int t = k*i+1; t <= b; t++) {
if(gcd(i,t) == 1) res++;
}
}
return res * 4 + 4;
} void MAIN() {
constant(); // 预处理欧拉函数值
while(true) {
a = cin.nextInt();
b = cin.nextInt();
if(a + b == 0) break;
long all = (2*a+1L) * (2*b+1L) - 1;
System.out.printf("%.7f\n", (double)black() / all);
}
} public static void main(String args[]) { new Main().MAIN(); }
}
UVa 10214 - Trees in a Wood.(欧拉函数)的更多相关文章
- UVA 10214 Trees in a Wood(欧拉函数)
题意:给你a.b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数 题解:首先只需要计算第一象限 ...
- UVA 10214 Trees in a Wood
https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
- UVa 10214 Trees in a Wood. (数论-欧拉函数)
题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- Django(四):model
一.创建model django.db.models是django自带的创建数据库的ORM. 在models.py中以继承models.Model创建表后,需要在setttngs中确保添加了当前应用, ...
- Spring 配置数据源之一三兄弟
前期的准备工作,我们是使用的是maven,我们下载节点即可... 节点如下: <dependency> <groupId>org.springframework</gro ...
- vue的v-html插值样式问题
content使用html插入文本和图片 使用scoped样式,渲染失败. 原因: 解决方案: 采用全局样式 或另外再加style标签单独渲染
- CF954F Runner's Problem
离散化+矩阵快速幂 首先看数据范围可以确定该题的算法为矩阵快速幂 然后易得转移矩阵 \[\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \ ...
- Thymeleaf模板表达式
日期格式.组件提取等. ${#dates.format(date)}${#dates.arrayFormat(datesArray)}${#dates.listFormat(datesList)}${ ...
- Django中间件解析
一,中间件的概念 django 中的中间件(middleware),在django中,中间件其实就是一个类,在请求到来和结束后,django会根据自己的规则在合适的时机执行中间件中相应的方法.在dja ...
- ENVI对一种WGS84投影不支持的情况说明
作者:朱金灿 来源:http://blog.csdn.net/clever101 假如wkt字符串这样描述WGS84投影: GEOGCS["GCS_WGS_1984",DATUM[ ...
- Android 对话框 (AlertDialog)
Android 提供了 AlertDialog 类可通过其内部类 Builder 轻松创建对话框窗口,但是没法对这个对话框窗口进行定制,为了修改 AlertDialog 窗口显示的外观,解决的办法就是 ...
- JS数组与对象的遍历方法大全
本文简单解析各种数组和对象属性的遍历方法: 原生for循环.for-in及forEach ES6 for-of方法遍历类数组集合 Object.key()返回键名的集合 jQuery的$.each() ...
- maven 编译打包时,明明类文件没有问题,却提示错误:未结束的字符串字面值,maven-compiler-plugin:2.3.2
maven错误提示如下: Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:2.3.2:compile (de ...