Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20 20

HINT

30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。

数位DP (废话)
我们可以知道,如果某一位开始没有限制的话,对每一位的$ans$是相同的且可以$O(1)$计算出来的
不妨这么考虑,假设有三位是没有限制的,那么一共有$10^3$种情况
每一位出现数字$x$的概率为$1/10$,那么三位加起来就是$3/10$
则数字$x$出现的次数为$10^3 * (3/10)$
注意判断一下前导零不计算入总结果的情况

 #include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
LL ten[]={,,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,1e11,1e12,1e13};
LL a[],ans[],sum;
LL Dfs(LL pos,LL zero,LL limit,LL k)
{
if (pos==) return ;
if (!limit && !zero)
{
sum+=ten[pos]/*pos*k;
return ten[pos];
}
else
{
LL up=limit?a[pos]:,cnt=;
for (LL i=;i<=up;++i)
{
LL t=Dfs(pos-,zero && i==,limit && i==up,k);
if (zero && i==) continue;
ans[i]+=t*k;
cnt+=t*k;
}
return cnt*k;
}
} void Solve(LL x,LL k)
{
LL pos=;
while (x)
{
a[++pos]=x%;
x/=;
}
Dfs(pos,true,true,k);
} int main()
{
LL x,y;
scanf("%lld%lld",&x,&y);
Solve(y,);
Solve(x-,-);
for (LL i=;i<=;++i)
printf("%lld ",ans[i]+sum);
printf("%lld",ans[]+sum);
}

1833. [ZJOI2010]数字计数【数位DP】的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  3. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  4. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  5. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  6. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  7. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  8. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  9. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

随机推荐

  1. javascript 单双引号(转载)

    来源:http://blog.csdn.net/irxiang/article/details/50164945 最近在使用javascript编程,遇到使用字符串的情况 写了一点测试代码 var s ...

  2. [javaSE] 集合框架(ArrayList,LinkedList,Vector)

    ArrayList特点:底层使用数组数据结构,查询速度快(使用脚标查),插入删除慢(索引要改变) LinkedList特点:底层使用链表数据结构,查询慢(需要一个一个去问),插入删除快 Vector特 ...

  3. SSH框架中NoSuchMethodError: antlr.collections.AST.getLine()的解决方案

    问题: 当配置好SSH框架后,使用Hibernate的Query功能时发生如下异常: NoSuchMethodError: antlr.collections.AST.getLine() 原因: St ...

  4. python学习之老男孩python全栈第九期_day013知识点总结

    # l = [1,2,3]# 索引# 循环 for # list # dic # str # set # tuple # f = open() # range() # enumerate'''prin ...

  5. [h5+api]移动app开发用到的微信好友,朋友圈,qq好友,新浪微博分享合集

    适用H5+环境,能够使用plus方法的移动app中 /** * Created by HBuilder. * User: tyx * Date: 2018-11-21 * Time: 17:28:51 ...

  6. margin相关基本知识

    什么是 margin ? CSS 边距属性定义元素周围的空间.通过使用单独的属性,可以对上.右.下.左的外边距进行设置.也可以使用简写的外边距属性同时改变所有的外边距.——W3School 边界,元素 ...

  7. ci 3.0 默认路由放在子文件夹 无法访问的解决办法

      比方说你想配置默认路由为: $route['default_controller'] = 'index/home'; ci3.0之前是可以放在 controllers中的子文件夹中的,但是到了ci ...

  8. 原生爬虫小Demo

    import re from urllib import request class Spider(): url = 'https://www.panda.tv/cate/lol' #[\s\S]匹配 ...

  9. 全功能开发团队(FSD)

  10. Scala安装时的坑

    重新安装了Scala(2.11.12版本)到d:\Program Files下,查看版本时,报如下异常: 百度了一下,竟然是不允许空格,太low了. 装到d:\Scala后问题解决