Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20 20

HINT

30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。

数位DP (废话)
我们可以知道,如果某一位开始没有限制的话,对每一位的$ans$是相同的且可以$O(1)$计算出来的
不妨这么考虑,假设有三位是没有限制的,那么一共有$10^3$种情况
每一位出现数字$x$的概率为$1/10$,那么三位加起来就是$3/10$
则数字$x$出现的次数为$10^3 * (3/10)$
注意判断一下前导零不计算入总结果的情况

 #include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
LL ten[]={,,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,1e11,1e12,1e13};
LL a[],ans[],sum;
LL Dfs(LL pos,LL zero,LL limit,LL k)
{
if (pos==) return ;
if (!limit && !zero)
{
sum+=ten[pos]/*pos*k;
return ten[pos];
}
else
{
LL up=limit?a[pos]:,cnt=;
for (LL i=;i<=up;++i)
{
LL t=Dfs(pos-,zero && i==,limit && i==up,k);
if (zero && i==) continue;
ans[i]+=t*k;
cnt+=t*k;
}
return cnt*k;
}
} void Solve(LL x,LL k)
{
LL pos=;
while (x)
{
a[++pos]=x%;
x/=;
}
Dfs(pos,true,true,k);
} int main()
{
LL x,y;
scanf("%lld%lld",&x,&y);
Solve(y,);
Solve(x-,-);
for (LL i=;i<=;++i)
printf("%lld ",ans[i]+sum);
printf("%lld",ans[]+sum);
}

1833. [ZJOI2010]数字计数【数位DP】的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  3. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  4. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  5. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  6. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  7. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  8. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  9. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

随机推荐

  1. [javaSE] 类型转换(1加1等于几)

    打印 ‘a’+1,输出98,解释:’a’是char类型占2个8bit,1是int类型占4个,’a’字符会被自动强制转换为int类型对应ascii码表97 打印’1’+1,输出 50,解释:’1’是ch ...

  2. 350-两个阵列的交叉点II

    给定两个数组,编写一个函数来计算它们的交集. 例1: 输入: nums1 = [1,2,2,1],nums2 = [2,2]  输出:[2,2] 例2: 输入: nums1 = [4,9,5],,nu ...

  3. SpringBoot(五) Web Applications: MVC

    统一异常处理 SpringBoot的默认映射 /error 码云: commit: 统一异常处理+返回JSON格式+favicon.ico 文档: 28.1.11 Error Handling 参考 ...

  4. java IO与文件操作

    文件创建与删除 创建目录或文件 createNewFile() 需要文件目录已存在 public class IO { public static void main(String args[]) { ...

  5. Fork/Join

    Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 我们再通过Fork和Join这两个单词来理解下 ...

  6. 小tip:CSS3下的渐变文字效果实现——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=1601 一.方法一:借 ...

  7. cf605D. Board Game(BFS 树状数组 set)

    题意 题目链接 有\(n\)张牌,每张牌有四个属性\((a, b, c, d)\),主人公有两个属性\((x, y)\)(初始时为(0, 0)) 一张牌能够被使用当且仅当\(a < x, b & ...

  8. ios 9 http

    记录: <key>NSAppTransportSecurity</key>     <dict>    <key>NSAllowsArbitraryLo ...

  9. 空间数据的WKT和WKB表现形式

    WKT(well-known text)是一种文本标记语言,该格式由开放地理空间联盟(OGC)制定,用于表示矢量数据中的几何对象,在数据传输与数据库存储时,常 用到它的二进制形式,即WKB(well- ...

  10. 从CVE-2018-1273看漏洞分析

    漏洞分析的边界 漏洞分析最应该关注的是漏洞相关的代码,至于其余的代码可以通过关键位置下断点,来理解大概功能. 其中最关键的就是了解数据流,找到离漏洞位置最近的 原始数据 经过的位置,然后开始往下分析, ...