Geeks 一般二叉树的LCA
不是BST,那么搜索两节点的LCA就复杂点了,由于节点是无序的。
以下是两种方法,都写进一个类里面了。
当然须要反复搜索的时候。能够使用多种方法加速搜索。
#include <iostream>
#include <vector>
using namespace std; class LCANormalTree
{
struct Node
{
int key;
Node *left, *right;
Node(int k) : key(k) , left(NULL), right(NULL) {}
}; //method 1:
bool findPath(Node *root, vector<Node *> &path, int k)
{
if (!root) return false;
path.push_back(root);
if (root->key == k) return true;
if (findPath(root->left, path, k) || findPath(root->right, path, k))
return true; path.pop_back();
return false;
} Node *findLCA(Node *root, int n1, int n2)
{
vector<Node *> pathN1, pathN2;
if (!findPath(root, pathN1, n1) || !findPath(root, pathN2, n2))
return NULL; int i = 0;
for (; i < (int) pathN1.size() && pathN1[i] == pathN2[i]; i++);
return pathN1[i-1];
} //Method 2:
Node *findLCAUtil(Node *root, int n1, int n2, bool &v1, bool &v2)
{
if (!root) return NULL;
if (root->key == n1)
{
v1 = true;
return root;
}
if (root->key == n2)
{
v2 = true;
return root;
}
Node *left = findLCAUtil(root->left, n1, n2, v1, v2);
Node *right = findLCAUtil(root->right, n1, n2, v1, v2); if (left && right) return root;
return left? left:right;
} bool find(Node *root, int k)
{
if (!root) return false;
if (root->key == k || find(root->left, k) || find(root->right, k))
return true;
return false;
} Node *findLCA_2(Node *root, int n1, int n2)
{
bool v1 = false, v2 = false;
Node *lca = findLCAUtil(root, n1, n2, v1, v2);
//当两者在不同一边的时候v1&&v1,当一个为另外一个的单亲节点的时候,那么就出现后面两种情况了。
if (v1 && v2 || v1 && find(lca, n2) || v2 && find(lca, n1))
return lca;
return NULL;
} Node *root;
public:
LCANormalTree()
{
cout<<"Algorithm 1 run\n";
run_1();
cout<<"\nAlgorithm 2 run\n";
run_2();
} void run_1()
{
root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
root->right->right = new Node(7);
Node *t = findLCA(root, 4, 5);
cout << "LCA(4, 5) = " << (t? t->key : -1);
t = findLCA(root, 4, 6);
cout << "\nLCA(4, 6) = " << (t? t->key : -1);
t = findLCA(root, 3, 4);
cout << "\nLCA(3, 4) = " << (t? t->key : -1);
t = findLCA(root, 2, 4);
cout << "\nLCA(2, 4) = " << (t? t->key : -1);
cout << endl; deleteTree(root);
} void run_2()
{
root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
root->right->right = new Node(7);
Node *lca = findLCA(root, 4, 5);
if (lca != NULL)
cout << "LCA(4, 5) = " << lca->key;
else
cout << "Keys are not present "; lca = findLCA(root, 4, 10);
if (lca != NULL)
cout << "\nLCA(4, 10) = " << lca->key;
else
cout << "\nKeys are not present "; cout<<endl;
deleteTree(root);
} ~LCANormalTree()
{
if (root) deleteTree(root);
} void deleteTree(Node *&r)
{//注意不能是*r。要*&r,由于须要改动r为NULL,防止多次释放
if (r)
{
deleteTree(r->left);
deleteTree(r->right);
delete r; r = NULL;
}
}
};
Geeks 一般二叉树的LCA的更多相关文章
- 二叉树的LCA(最近公共祖先)算法
1.如果是二叉搜索树 2.如果是普通树
- 最近公共祖先问题 LCA
2018-03-10 18:04:55 在图论和计算机科学中,最近公共祖先,LCA(Lowest Common Ancestor)是指在一个树或者有向无环图中同时拥有v和w作为后代的最深的节点. 计算 ...
- Leetcode_236. 二叉树的最近公共祖先
求二叉树的LCA code /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *le ...
- 二刷Cracking the Coding Interview(CC150第五版)
第18章---高度难题 1,-------另类加法.实现加法. 另类加法 参与人数:327时间限制:3秒空间限制:32768K 算法知识视频讲解 题目描述 请编写一个函数,将两个数字相加.不得使用+或 ...
- 【Leetcode】查找二叉树中任意结点的最近公共祖先(LCA问题)
寻找最近公共祖先,示例如下: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ ...
- PAT A1151 LCA in a Binary Tree (30 分)——二叉树,最小公共祖先(lca)
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- 面试题6:二叉树最近公共节点(LCA)《leetcode236》
Lowest Common Ancestor of a Binary Tree(二叉树的最近公共父亲节点) Given a binary tree, find the lowest common an ...
- PAT 1151 LCA in a Binary Tree[难][二叉树]
1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...
- Geeks LCA最低公共单亲节点
给出一颗二叉树.找到两个值的最小公共节点. 假设两个值都会在树中出现. 假设可能不会出现的话,也非常easy.就查找一遍看两个值是否在树中就能够了.假设不在就直接返回NULL. 基本思想:就是在二叉树 ...
随机推荐
- 修饰符(动态String数组篇)--- 常用 解除疑问。
1.无修饰符----是直接传基本类型的地址过来,并没有把基本类型的指针复制一份入栈,所以一旦修改就是修改原来的值. 2.const 修饰符 与 无修饰符一致. 3.var修饰符 与 上一致. 4.ou ...
- 由结构体成员地址计算结构体地址——list_entry()原理详解
#define list_entry(ptr, type, member) container_of(ptr, type, member) 在进行编程的时候,我们经常在知道结构体地址的情况下,寻找其中 ...
- 删除数据库所有存储过程的SQL语句
--/第1步**********删除所有表的外键约束*************************/ DECLARE c1 cursor for select 'alter table ['+ o ...
- android拾遗——Android之Service与IntentService的比较
不知道大家有没有和我一样,以前做项目或者练习的时候一直都是用Service来处理后台耗时操作,却很少注意到还有个IntentService,前段时间准备面试的时候看到了一篇关于IntentServic ...
- android发布版本的几个命令
./build_native.sh /opt/software/apache-ant-1.8.2/bin/ant clean #/opt/software/apache-ant-1.8.2/bin/a ...
- AndroidStudio3.0到3.1遇到的坑
原文:https://blog.csdn.net/qq_36676433/article/details/80361064 本以为3.0到3.1仅仅是界面的优化,万万没想到的是这个坑比起2.0到3.0 ...
- 【LOJ】#2054. 「TJOI / HEOI2016」树
题解 一写过一交A的水题 只要求一个dfs序,新加一个标记在子树所在的区间上覆盖上该点,维护深度最大的答案 代码 #include <bits/stdc++.h> #define ente ...
- Action(8):Error -27728:Step download timeout(120 seconds)has expired when downloading
Action(8):Error -27728:Step download timeout(120 seconds)has expired when downloading 出现如下图所示对话框上的 ...
- ref:Mysql授权远程登陆
ref:https://blog.csdn.net/qq_26710805/article/details/79776897 在Windows环境上操作.步骤如下: 1. 打开cmd窗口,登陆mysq ...
- Xamarin 2017.10.9更新
Xamarin 2017.10.9更新 本次更新主要解决了一些bug.Visual Studio 2017升级到15.4获得新功能.Visual Studio 2015需要工具-选项-Xamarin ...