1012. Complement of Base 10 Integer

Every non-negative integer N has a binary representation.  For example, 5 can be represented as "101" in binary, 11 as "1011" in binary, and so on.  Note that except for N = 0, there are no leading zeroes in any binary representation.

The complement of a binary representation is the number in binary you get when changing every 1 to a 0 and 0 to a 1.  For example, the complement of "101" in binary is "010" in binary.

For a given number N in base-10, return the complement of it's binary representation as a base-10 integer.

Example 1:

Input: 5
Output: 2
Explanation: 5 is "101" in binary, with complement "010" in binary, which is 2 in base-10.

Example 2:

Input: 7
Output: 0
Explanation: 7 is "111" in binary, with complement "000" in binary, which is 0 in base-10.

Example 3:

Input: 10
Output: 5
Explanation: 10 is "1010" in binary, with complement "0101" in binary, which is 5 in base-10.

Note:

  1. 0 <= N < 10^9

Approach #1: Math. [C++]

class Solution {
public:
int bitwiseComplement(int N) {
int X = 1;
while (N > X) X = X * 2 + 1;
return X ^ N;
}
};

  

Analysis:

Claim ----- The XOR operation evaluates the difference in the individual bits, i.e it gives information about whether the bits are identical or not.

Proof ----- It's easy once youknow the definition of XOR.  0^0 = 1^1 = 0 (as the bits don't differ), whereas 0^1 = 1^0 = 1 (as the bits are difference).

Claim ----- XOR of identical numbers is zero.

Proof ----- As argued above, the bits of identical numbers do not differ at any position. Hence, XOR is zero.

Claim ----- 0 XOR any number is the number itself.

Proof ----- XOR gives us the bit difference. Since all the bits in 0 are unset, therefore the difference in bits is the number itself.

Claim ----- XOR of a number with its complement results in a number with all set bits.

Proof ----- This is trivial,  since bits of a number and its complement differ at every position(according to the definition of complement).

So, number ^ complement = all_set_bits ==> number ^ number ^ complement = number ^ all_set_bits ===> 0 ^ complement = number ^ all_set_bits

So, complement = number ^ all_set_bits.

So, we find out the number containing all the set bits and XOR with the original number to get the answer.

Reference:

https://leetcode.com/problems/complement-of-base-10-integer/discuss/256734/Detailed-Explanation-using-XOR-C%2B%2BJavaScript

1013. Pairs of Songs With Total Durations Divisible by 60

In a list of songs, the i-th song has a duration of time[i] seconds.

Return the number of pairs of songs for which their total duration in seconds is divisible by 60.  Formally, we want the number of indices i < j with (time[i] + time[j]) % 60 == 0.

Example 1:

Input: [30,20,150,100,40]
Output: 3
Explanation: Three pairs have a total duration divisible by 60:
(time[0] = 30, time[2] = 150): total duration 180
(time[1] = 20, time[3] = 100): total duration 120
(time[1] = 20, time[4] = 40): total duration 60

Example 2:

Input: [60,60,60]
Output: 3
Explanation: All three pairs have a total duration of 120, which is divisible by 60.

Note:

  1. 1 <= time.length <= 60000
  2. 1 <= time[i] <= 500
 

Approach #1: Brute force + Map. [C++]

class Solution {
public:
int numPairsDivisibleBy60(vector<int>& time) {
int ans = 0;
int len = time.size();
map<int, vector<int>> m;
vector<int> duration = {60, 120, 180, 240, 300, 360, 420, 480, 540, 600,
660, 720, 780, 840, 900, 960, 1020};
for (int i = 0; i < len; ++i) m[time[i]].push_back(i);
for (int i = 0; i < len; ++i) {
for (int j = 0; j < duration.size(); ++j) {
if (duration[j] - time[i] > 0) {
int tmp = duration[j] - time[i];
if (m.count(tmp)) {
int count = m[tmp].end() - upper_bound(m[tmp].begin(), m[tmp].end(), i);
ans += count;
}
}
}
} return ans;
}
};

  

Approach #2: Orz.

    int numPairsDivisibleBy60(vector<int>& time) {
vector<int> c(60);
int res = 0;
for (int t : time) {
res += c[(60 - t % 60) % 60];
c[t % 60] += 1;
}
return res;
}

  

Analysis:

Calculate the time%60 then it will be exactly same as two sum problem.

Reference:

https://leetcode.com/problems/pairs-of-songs-with-total-durations-divisible-by-60/discuss/256738/JavaC%2B%2BPython-Two-Sum-with-K-60

1014. Capacity To Ship Packages Within D Days

A conveyor belt has packages that must be shipped from one port to another within Ddays.

The i-th package on the conveyor belt has a weight of weights[i].  Each day, we load the ship with packages on the conveyor belt (in the order given by weights). We may not load more weight than the maximum weight capacity of the ship.

Return the least weight capacity of the ship that will result in all the packages on the conveyor belt being shipped within Ddays.

Example 1:

Input: weights = [1,2,3,4,5,6,7,8,9,10], D = 5
Output: 15
Explanation:
A ship capacity of 15 is the minimum to ship all the packages in 5 days like this:
1st day: 1, 2, 3, 4, 5
2nd day: 6, 7
3rd day: 8
4th day: 9
5th day: 10 Note that the cargo must be shipped in the order given, so using a ship of capacity 14 and splitting the packages into parts like (2, 3, 4, 5), (1, 6, 7), (8), (9), (10) is not allowed.

Example 2:

Input: weights = [3,2,2,4,1,4], D = 3
Output: 6
Explanation:
A ship capacity of 6 is the minimum to ship all the packages in 3 days like this:
1st day: 3, 2
2nd day: 2, 4
3rd day: 1, 4

Example 3:

Input: weights = [1,2,3,1,1], D = 4
Output: 3
Explanation:
1st day: 1
2nd day: 2
3rd day: 3
4th day: 1, 1

Note:

  1. 1 <= D <= weights.length <= 50000
  2. 1 <= weights[i] <= 500

Approach #1: Binary search. [C++]

class Solution {
public:
int shipWithinDays(vector<int>& weights, int D) {
int left = *max_element(weights.begin(), weights.end());
int right = 25000000;
while (left < right) {
int mid = (right + left) / 2;
int need = 1, cur = 0;
for (int i = 0; i < weights.size() && need <= D; cur += weights[i++]) {
if (cur + weights[i] > mid)
cur = 0, need++;
}
if (need > D) left = mid + 1;
else right = mid;
}
return left;
}
};

  

Analysis:

Given the number of bags, return the minimum capacity of each bag, so that we can put items one by one into all bags.

Reference:

https://leetcode.com/problems/capacity-to-ship-packages-within-d-days/discuss/256729/JavaC%2B%2BPython-Binary-Search

1015. Numbers With Repeated Digits

Given a positive integer N, return the number of positive integers less than or equal to N that have at least 1 repeated digit.

Example 1:

Input: 20
Output: 1
Explanation: The only positive number (<= 20) with at least 1 repeated digit is 11.

Example 2:

Input: 100
Output: 10
Explanation: The positive numbers (<= 100) with atleast 1 repeated digit are 11, 22, 33, 44, 55, 66, 77, 88, 99, and 100.

Example 3:

Input: 1000
Output: 262

Note:

  1. 1 <= N <= 10^9
 

Approach #1:

class Solution {
public:
int numDupDigitsAtMostN(int N) {
int invalid = 0; int c = floor(log10(N+1)) + 1;
for (int i = 0; i < c-1; ++i) {
invalid += 9 * perm(9, i);
} int digits = 0;
for (int i = 0; i < c; ++i) {
int digit = ((N+1) / (int)pow(10, c-i-1)) % 10; for (int j = (i > 0 ? 0 : 1); j < digit; ++j) {
if (((digits >> j) & 1) == 0) {
invalid += perm(9 - i, c - i - 1);
}
} if ((digits >> digit) & 1) break;
digits |= 1 << digit;
} return N - invalid;
} int perm(int m, int n) {
int out = 1;
while (m > 1 && n > 0) {
out *= m;
m--;
n--;
} return out;
}
};

  

Analysis:

For example, with the number 350, we have 3 digits, meaning we can start by finding all invalid numbers from 0 to 99 (e.g. the first two digits). To start, let's assuming we only have 1 digit available. In this case, we can't vary any other digits in the number since there are none, and because there is only 1 digit they are all invalid. Thus, since there are 9 total numbers with 1 digit, we have 9 invalid permutations for this digit. Similary, for 2 digits, we have 1 digit we can vary (e.g. 1x has x that can be varied, 2y has y that can be varied, so on and so forth). Plugging that into our formula, we have perm(9,1) which results in 9. Because there are 9 possible digits for the first digit, we can multiply the result by 9 (perm(9, 1) * 9) which gives us 81 invalid digits. Adding that onto our first result of 9, and we get 90 invalid for a number range of 1-99 (meaning we have 9 valid digits in that range).

At this point, for the number 350, we know that thare are at least 90 invalid digits from 1 - 100 as a result (since 100 is valid). Now however we need to count the number of invalid digits from 100 - 350. This can be done by varying each of the digits in 351 (e.g. N+1), and finding the valid permutations of that as a result. For example:

3XX -> perm(9-0, 3-0-1) -> perm(9, 2)
X5X -> perm(9-1, 3-1-1) -> perm(8, 1)
XX1 -> perm(9-2, 3-2-1) -> perm(7, 0)

We then add this number of invalid permutations to our count based on the number we have. However, if we have previously seen a number in that range. we ignore it. For example, when we get to the 5 in 351, we will only add perm(8, 1)'s result 4 time, since the third time has alredy been accounted for when we went over the 3 in 351. Once we've done all of this, we can simply subtract our number of nvalid numbers from our original number N to get our result.

Here is what this process looks like in action:

350 -> 351
invalid digits -> 0 1 digit -> X -> perm(9, 0) * 9 -> 9 invalid digits
2 digits -> YX -> perm(9, 1) * 9 -> 81 invalid digits
invalid digits -> 90 0XX -> invalid so don't count the invalid digits.
1XX -> perm(9, 2) -> 72 invalid digits
2XX -> perm(9, 2) -> 72 invalid digits
3XX -> stop counting invalid numbers for the first digit.
X0X -> perm(8, 1) -> 8 invalid digits
X1X -> perm(8, 1) -> 8 invalid digits
X2X -> perm(8, 1) -> 8 invalid digits
X3X -> perm(8, 1) -> 8 invalid digits -> but because we've already looked at the digit 3 previously we can skip this.
X4X -> perm(8, 1) -> 8 invalid digits
X5X -> stop counting invalid numbers for the second digit.
XX0 -> perm(7, 0) -> 1 invalid digit
XX1 -> stop counting invalid numbers for the third and final digit.
invalid digits -> 267 result -> 350 - 267 = 83

Reference:

https://leetcode.com/problems/numbers-with-repeated-digits/discuss/257241/C%2B%2B-with-Alternative-Explanation

 

Weekly Contest 128的更多相关文章

  1. LeetCode Weekly Contest 8

    LeetCode Weekly Contest 8 415. Add Strings User Accepted: 765 User Tried: 822 Total Accepted: 789 To ...

  2. Leetcode Weekly Contest 86

    Weekly Contest 86 A:840. 矩阵中的幻方 3 x 3 的幻方是一个填充有从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等. 给定一个 ...

  3. leetcode weekly contest 43

    leetcode weekly contest 43 leetcode649. Dota2 Senate leetcode649.Dota2 Senate 思路: 模拟规则round by round ...

  4. LeetCode Weekly Contest 23

    LeetCode Weekly Contest 23 1. Reverse String II Given a string and an integer k, you need to reverse ...

  5. LeetCode之Weekly Contest 91

    第一题:柠檬水找零 问题: 在柠檬水摊上,每一杯柠檬水的售价为 5 美元. 顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯. 每位顾客只买一杯柠檬水,然后向你付 5 美元.10  ...

  6. LeetCode Weekly Contest

    链接:https://leetcode.com/contest/leetcode-weekly-contest-33/ A.Longest Harmonious Subsequence 思路:hash ...

  7. LeetCode Weekly Contest 47

    闲着无聊参加了这个比赛,我刚加入战场的时候时间已经过了三分多钟,这个时候已经有20多个大佬做出了4分题,我一脸懵逼地打开第一道题 665. Non-decreasing Array My Submis ...

  8. 75th LeetCode Weekly Contest Champagne Tower

    We stack glasses in a pyramid, where the first row has 1 glass, the second row has 2 glasses, and so ...

  9. LeetCode之Weekly Contest 102

    第一题:905. 按奇偶校验排序数组 问题: 给定一个非负整数数组 A,返回一个由 A 的所有偶数元素组成的数组,后面跟 A 的所有奇数元素. 你可以返回满足此条件的任何数组作为答案. 示例: 输入: ...

随机推荐

  1. phpcms中调用外部网站数据

    1.在phpcms后台模块->模块管理->数据源->外部数据源 中 添加外部数据源 2.在phpcms前台模板中,使用get标签获取数据源中数据. {pc:get sql=" ...

  2. EF6.0新特性-DbCommandInterceptor实现非SQL端读写分离

    前几天看了一个基于sqlserver的负载均衡与读写分离的软件Moebius,实现的方式还是不错的,这使得用sqlserver数据库的同学时有机会对数据库进行更有效的优化了

  3. Golang之Socket

    go创建socket很简单 package main import ( "fmt" "net" ) func main() { //服务器监听地址 fmt.Pr ...

  4. Vim基础教程

    一.简介 世界上只有三种编辑器,EMACS.VIM和其它. 我们所处的时代是非常幸运的,有越来越多的编辑器,相对于古老的VIM和EMACS,它们被称为现代编辑器.我们来看看这两个古董有多大年纪了: * ...

  5. Linux安装和配置Vim7.4

    一.简介 Vim是一个类似于Vi的文本编辑器,不过在Vi的基础上增加了很多新的特性,Vim普遍被推崇为类Vi编辑器中最好的一个,事实上真正的劲敌来自Emacs的不同变体.1999 年Emacs被选为L ...

  6. Ckeditor上传图片返回的JS直接显示出来,未执行!!!

    Ckeditor上传图片网上有很多教程. 下面是我今天下午遇到的一个坑...自己挖的坑. 在conotroller里 我开始习惯性的 response.setContentType("app ...

  7. dbutils封装对象,单列,一行一列(用)

    基本用法:查找并封装对象与对象集合 public User findUserByNamePassword(String name,String password){ QueryRunner runne ...

  8. 【Maven】Nexus配置和使用

    Nexus安装 nexus安装,可以参照:[Maven]Nexus(Maven仓库私服)下载与安装 Nexus简单说明 用途:指定私服的中央地址.将自己的Maven项目指定到私服地址.从私服下载中央库 ...

  9. 2018.09.09 cogs693. Antiprime数(搜索)

    传送门 看完题发现很sb. 前10个质数乘起来已经超出题目范围了. 因此只用搜索前几个质数每个的次数比较谁的因数的就行了. 代码: #include<iostream> #define l ...

  10. 2018.07.25 bzoj2125: 最短路(圆方树+倍增)

    传送门 人生的第一道仙人掌. 这道题求是仙人掌上的最短路. 先建出圆方树,然后用倍增跑最短路,当lca" role="presentation" style=" ...