解题:POI 2008 Subdivision of Kingdom
还可以这么搜......学到了(PoPoQQQ orz)
我们最朴素的做法是枚举所有状态(当然可以剪,剪完最终实际状态量也是$C_{26}^{13}$的),然后每次$O(n)$扫一遍判断,大概会T炸,考虑优化
我们先预处理每个状态中$1$的数目和连边的状态,然后压缩状态初始让一边集合为空,一边集合为全集,这样每次从已有的点的前面$\frac{n}{2}$个点中枚举一个加入另一边,就可以边搜边更新边数而不用最后$O(n)$检查了。另一个问题是数组可能非常大,这里我们可以把状态拆成前后两半,然后检查的时候检查两半再拼起来就好了。学了学技巧和思想还是挺好的说......
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int ss[],cnt[<<];
int n,m,t1,t2,ans=2e9,anss,num,half;
int s(int x)
{
return <<(x-);
}
int getst(int x)
{
return cnt[x&half]+cnt[x>>num];
}
void DFS(int last,int noww,int state,int numb)
{
if(noww>n) return ;
if(noww==num)
{
if(numb<ans)
ans=numb,anss=state;
return ;
}
for(int i=last;i<=n;i++)
DFS(i+,noww+,state|s(i),numb-getst(state&ss[i])+getst((~state)&ss[i]));
}
int main ()
{
scanf("%d%d",&n,&m);
num=n>>,half=(<<num)-;
for(int i=;i<=m;i++)
{
scanf("%d%d",&t1,&t2);
ss[t1]|=s(t2),ss[t2]|=s(t1);
}
for(int i=;i<=half;i++)
cnt[i]=cnt[i>>]+(i&);
DFS(,,,);
for(int i=;i<=n;i++)
if(anss&s(i)) printf("%d ",i);
return ;
}
解题:POI 2008 Subdivision of Kingdom的更多相关文章
- 1130: [POI2008]POD Subdivision of Kingdom
1130: [POI2008]POD Subdivision of Kingdom https://lydsy.com/JudgeOnline/problem.php?id=1130 分析: 有效状态 ...
- [POI 2008&洛谷P3467]PLA-Postering 题解(单调栈)
[POI 2008&洛谷P3467]PLA-Postering Description Byteburg市东边的建筑都是以旧结构形式建造的:建筑互相紧挨着,之间没有空间.它们共同形成了一条长长 ...
- 解题:POI 2008 Plot purchase
题面 原来看过然后没做,结果板板把这道题改了改考掉了,血亏=.= 首先看看有没有符合条件的点.如果没有开始寻找解,先把所有的大于$2*k$的点设为坏点,然后求最大子矩形,只要一个最大子矩形的权值和超过 ...
- 解题:POI 2008 Station
题面 水水的换根裸题,不过以前还真没做过换根的题 换根的思想就是在DFS中利用树的信息更新出当前点为根时的信息,具体来说一般是考虑子树外和子树内两部分 每个点的答案$ans$就是$ans[fa]+n- ...
- [POI 2008]Mafia
这题目写了我好长时间,但还是几乎(不要在意细节)一遍 A 了喵~ 据说有代码奇短的,Orz 思路巧妙的大爷 想我这种 Brute Force 写写的傻 X 真是代码量飞起来了耶,喵~ 如果把每个人看成 ...
- [POI 2008][BZOJ 1132]Tro
这题我真是无能为力了 这题的做法还是挺简单的 枚举左下角的点做为原点,把其余点按极角排序 PS.是作为原点,如枚举到 k 时,对于所有 p[i] (包括p[k]) p[i]-=p[k] (此处为 ...
- bzoj 1112 poi 2008 砖块
这滞胀题调了两天了... 好愚蠢的错误啊... 其实这道题思维比较简单,就是利用treap进行维护(有人说线段树好写,表示treap真心很模板) 就是枚举所有长度为k的区间,查出中位数,计算代价即可. ...
- [BZOJ 1124][POI 2008] 枪战 Maf
1124: [POI2008]枪战Maf Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 659 Solved: 259[Submit][Status ...
- loj10104 [POI 2008]Blockade
传送门 分析 我们知道对于一个割点,我们如果去掉它就会使原来的图被分为若干块,则这是我们将所有块包含的点的个数两两相乘即可,而如果不是割点则对于图的连通性没有影响.注意在最后要加上2*(n-1)表示去 ...
随机推荐
- WebRtc与SIP
最近研究一下 webrtc ,看了几篇paper,之前也尝试运行验证了几个demo,现在把我的理解总结到这里. WebRTC 简介 WebRTC,名称源自网页实时通信(Web Real-Time Co ...
- [文章存档]Kudu 的 Debug Console 窗口如何查看更多文件
链接:https://docs.azure.cn/zh-cn/articles/azure-operations-guide/app-service-web/aog-app-service-web-h ...
- kubeadm 线上集群部署(二) K8S Master集群安装以及工作节点的部署
PS:所有机器主机名请提前设置好 在上一篇,ETCD集群我们已经搭建成功了,下面我们需要搭建master相关组件,apiverser需要与etcd通信并操作 1.配置证书 将etcd证书上传到mast ...
- 多tomcat 同一个浏览器 多个项目 会导致session覆盖
1,多tomcat 同一个浏览器 同一个项目 会导致session覆盖 个人猜测:一个服务器中有多个Tomcat服务器多个项目,每个服务器占用不同的端口号,当在同一个浏览器里面同时打开2个系统时,一个 ...
- PHP--面向对象的设计原则
三大特性是:封装.继承.多态 所谓封装,也就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏. 封装是面向对象的特征之一,是对象和类概念的主要特 ...
- 第七周psp例行报告
本周psp 本周进度条 代码累积折线图 博文字数累积折线图 饼状图
- WebGL学习笔记三
在上一章中主要说明了通过矩阵来实现平面图形的平移.旋转.缩放,到最后完全可以用4*4矩阵实现所有的动作,在本章就是第四章主要是对矩阵进行了封装,其WebGL的流程和上一章大部分大部分相同,定义可以在w ...
- [不明所以]android 5.0 couldn't find "libmsc.so"
用5.0 mi2调试的时候 search那边不行, 出现...couldn't find "libmsc.so" 我这边情况的解决方法是 在armeabi的libmsc.so复制一 ...
- 实验二 四则运算 完成版 ver.1
package size; import java.awt.EventQueue; import javax.swing.JFrame; import javax.swing.JMenuBar; im ...
- 2017 Summary
几门课 基础电路与电子学 知道了一些二极管三极管的基本基本很基本的那种物理知识吧,但是毕竟我是从电信转专业过来的,所以说我内心就是逃避模电这样的课的.上课基本没听,后面只是死命复习了一周,考的还可以. ...