【线性基/神仙题】P4151 [WC2011]最大XOR和路径
Description
给定一个无向连通图,边有边权,求一个 \(1~\sim n\) 的路径,最大化边权的异或和。如果一条边经过多次则计算多次。
Input
第一行是两个整数 \(n,m\) 代表点数和边数
下面 \(m\) 行每行三个整数描述一条边
Output
输出一行一个整数代表答案
Hint
\(1~\leq~n~\leq~50000,1~\leq~m~\leq~100000,1~\leq~\) 边权 \(\leq~10^{18}\)
Solution
首先注意到一个结论:对于所有的简单环,环上边权的异或和都可以无代价的获取。原因是可以从一号点出发进入该环绕一圈后原路返回。由于一条路径绕两边对答案的贡献为 \(0\) ,所以这些简单环的异或和都可以无代价取得。那么现在问题就转化成了寻找一条 \(1\) 到 \(n\) 的路径,再异或上一些简单环的异或和,最大化答案。
我们考虑应该寻找哪一条路径:事实上任选一条路径即可。原因是选择的路径和答案路径一定可以构成一个环,所以异或上该环的权值就可以得到最优解。
考虑最大化异或和可以使用线性基解决。时间复杂度 \(O(m~+~n~\log^2d)\),其中 \(d\) 为边权
Code
#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#define printtime()
#else
#include <ctime>
#define printtime() printf("Times used = %ld ms\n", clock())
#endif
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 50010;
const int maxm = 200010;
const int maxl = 61;
struct Edge {
int to;
ll v;
Edge *nxt;
};
Edge edge[maxm], *hd[maxn]; int ecnt;
inline void cont(ci from, ci to, cl v) {
Edge &e = edge[++ecnt];
e.to = to; e.nxt = hd[from]; e.v = v; hd[from] = &e;
}
int n, m;
ll ans;
bool vis[maxn];
ll val[maxn], lb[maxl];
void reading();
void insert(ll);
void dfs(ci, cl);
int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
reading();
dfs(1, 0);
for (int i = maxl - 1; ~i; --i) {
ans = std::max(ans, ans ^ lb[i]);
}
qw(ans, '\n', true);
printtime();
return 0;
}
void reading() {
int a, b; ll c;
for (int i = 1; i <= m; ++i) {
a = 0; b = 0; c = 0; qr(a); qr(b); qr(c);
cont(a, b, c); cont(b, a, c);
}
}
void dfs(ci u, cl tp) {
vis[u] = true; val[u] = tp;
if (u == n) ans = tp;
for (Edge *e = hd[u]; e; e = e->nxt) {
int to = e->to;
if (!vis[to]) dfs(to, tp ^ e->v);
else insert(tp ^ e->v ^ val[to]);
}
}
void insert(ll x) {
for (int i = maxl - 1; ~i; --i) if (x & (1ll << i)) {
if (lb[i]) {
x ^= lb[i];
} else {
lb[i] = x;
for (int j = maxl - 1; j > i; --j) if (lb[j]) {
lb[j] ^= x;
}
for (int j = 0; j < i; ++j) if (lb[j] & (1ll << i)) {
lb[i] ^= lb[j];
}
break;
}
}
}
【线性基/神仙题】P4151 [WC2011]最大XOR和路径的更多相关文章
- 洛谷 P4151 [WC2011]最大XOR和路径 解题报告
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...
- P4151 [WC2011]最大XOR和路径
P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...
- 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]
题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...
- 洛谷P4151 [WC2011]最大XOR和路径(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 首先看到异或就想到线性基 我们考虑有一条路径,那么从这条路径走到图中的任意一个环再走回这条路径上,对答案的贡献是这个环的异或和,走到这个环上的路径对 ...
- [洛谷P4151][WC2011]最大XOR和路径
题目大意:给你一张$n$个点$m$条边的无向图,求一条$1->n$的路径,使得经过路径值的异或值最大(重复经过重复计算) 题解:某条路$k$被重复走了两次,那么它的权值对答案的贡献就是$0$,但 ...
- P4151 [WC2011]最大XOR和路径 线性基
题目传送门 题意:给出一幅无向图,求1到n的所有路径中最大异或和,一条边可以被重复经过. 思路: 参考了大佬的博客 #pragma GCC optimize (2) #pragma G++ optim ...
- [WC2011]最大XOR和路径(线性基)
P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...
- [WC2011]最大XOR和路径 线性基
[WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...
- 题解-[WC2011]最大XOR和路径
[WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...
随机推荐
- CUDA、CUDNN在Mac Book Pro上安装的问题
由于原版MacOS自带Nvidia驱动版本过低,导致最新版本CUDA安装后无法运行.具体症状为:在编译时一切正常,在运行CUDA相关程序时报错: CUDA driver version is insu ...
- [zabbix] zabbix从内部检测web页面
环境说明: 两台机器各运行一个tomcat实例,通过阿里云slb到后端,假设后端服务挂了一个,从外部访问整个服务还是可用的,所以需要从内部检测web页面. zabbix自带的web场景都是从外部检测w ...
- 随手记录-linux-添加epel源
下载各种yum源 https://opsx.alibaba.com/mirror https://blog.csdn.net/harbor1981/article/details/51135623
- PHPCMS之 列表和内容页
上一篇随笔中降到了一些相似的语法可以来后台管理网页的内容,下面就是关于列表的管理 加入一级栏目中有几个有二级菜单的,那么就可以把相应的界面建立一个副本,然后修改里面栏目的一些属性 {pc:conten ...
- ASP.NET中实现封装与策略模式
首先把运算方法封装起来,这样在网页界面中直接就可以调用了,不过是换张脸而已! using System; using System.Collections.Generic; using System. ...
- SpringMVC(四)-- springmvc的系统学习之文件上传、ajax&json处理
资源:尚学堂 邹波 springmvc框架视频 一.文件上传 1.步骤: (1)导入jar包 commons-fileupload,commons-io (2)在springmvc的配置文件中配置解析 ...
- python learning Functional Programming.py
print(abs(-10)) # 函数可以是变量 f = abs f(-10) def add(x,y,f): return f(x) + f(y) x = -5 y = 6 f = abs # 简 ...
- 12_Java面向对象_第12天(构造方法、this、super)_讲义
今日内容介绍 1.构造方法 2.this关键字 3.super关键字 4.综合案例 01构造方法引入 A:构造方法的引入 在开发中经常需要在创建对象的同时明确对象的属性值, 比如员工入职公司就要明确他 ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (五) 树莓派单子节点发送数据
本项目中各个节点和树莓派的通信不区分信道,因此如果由树莓派发送给特定节点的数据会被所有节点接收到,因此子节点可以判别该数据是否发给自己的,需要在数据的第二个字节中加入目标节点的编号(第一个字节为源节点 ...
- selenium获取新页面标签页(只弹出一个新页面的切换)
selenium获取新页面标签页(只弹出一个新页面的切换) windows = driver.current_window_handle #定位当前页面句柄 all_handles = driver. ...