P4101 [HEOI2014]人人尽说江南好
题目描述
小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏。
在过去,人们是要边玩游戏边填词的,比如这首《菩萨蛮》就是当年韦庄在玩游戏时填 的: 人 人 尽 说 江 南 好, 游 人 只 合 江 南 老。
然而我们今天不太关心人们填的词是什么,我们只关心小 Z 那时玩过的游戏。游戏的规 则是这样的,给定 N 堆石子,每堆石子一开始只有 1 个。小 Z 和他的小伙伴轮流操作, 小 Z 先行操作。操作可以将任意两堆石子合并成为一堆,当谁不再能操作的时候,谁就输掉了。
不过,当一堆石子堆的太高时可能发生危险,因此小 Z 和他的小伙伴规定,任何时刻任意一 堆石子的数量不能超过 m。即假如现在有两堆石子分别有 a 个和 b 个,而且 a+b>m,那么这 两堆石子就不能合成一堆。
小 Z 和他的小伙伴都是很聪明的,所以他们总是会选择对自己最有利的策略。现在小 Z 想要知道,在这种情况下,对于一个给定的 n 和 m,到底是谁能够获得胜利呢?
输入输出格式
输入格式:
本题包括多组数据 数据第一行为一个数 T,为数据组数 以下 T 行,每行两个正整数 n,m
输出格式:
输出 T 行,每行为 0 或 1,如果为 0 意为小 Z(即先手)会取得胜利,为 1 则为后手会 取得胜利。
输入输出样例
5
7 3
1 5
4 3
6 1
2 2
1
1
1
1
0
说明
对于 10%的数据, m>=n
对于 20%的数据, n,m<=10
对于 30%的数据, n,m<=50, 2*m>=n
对于 50%的数据, n,m<=100
对于 70%的数据, n,m<=1000000
对于 100%的数据, n,m<=1000000000, T<=100
Solution:
本题博弈论。
首先,合并次数最多为$n-1$,当$n\leq m$时答案直接由合并次数的奇偶判断,而当$n>m$时,最后只可能形成$\frac{n}{m}$个满的$m$堆和一个不满$m$的堆,每个$m$数量的堆合并次数为$m-1$次,而$n\%m$数量的堆合并次数为$n\%m-1$(注意当$n\%m==0$时就不需要合并了,也就不用减$1$),总合并次数为$\frac{n}{m}*(m-1)+n\%m-1+(n\%m==0)$,该式子可以将$n\%m$用$n-\frac{n}{m}*m$代换,最后次数化简得$n-\frac{n}{m}+(n\%m==0)-1$,那么答案就由最后合并次数的奇偶来判断即可。
代码:
/*Code by 520 -- 10.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n,m; int main(){
ios::sync_with_stdio();
cin>>n;
while(cin>>n>>m) {
ll tp=n-n/m-+(n%m==);
puts(tp&?"":"");
}
return ;
}
P4101 [HEOI2014]人人尽说江南好的更多相关文章
- BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 470 Solved: 336[Submit][Sta ...
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- luoguP4101 [HEOI2014]人人尽说江南好 结论
题目大意: 给定\(n\)堆初始大小为\(1\)的石堆 每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\) 询问先手必赢? 不妨设我们是先手,且最后我们必胜 我们考虑构造局面\( ...
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
- BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】
题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...
随机推荐
- Linux之linux基础命令
一.命令分:内部命令.外部命令① 内部命令:是由 Shell解释器解释的② 外部命令:除了Shell解释器以外的命令③ 识别命令类型:type 命令字 二.命令一般组成格式: 命令字 [选项].. [ ...
- 大数据中Linux集群搭建与配置
因测试需要,一共安装4台linux系统,在windows上用vm搭建. 对应4个IP为192.168.1.60.61.62.63,这里记录其中一台的搭建过程,其余的可以直接复制虚拟机,并修改相关配置即 ...
- Android Service(上)
一 Service简介 Service是Context的子类 Service是四大组件之一 用来在后台处理一些比较耗时的操作或者去执行某些需要长期运行的任务 二 注意 Service里面不能直接执行耗 ...
- 《杜增强讲Unity之Tanks坦克大战》6-发射子弹
6 发射子弹 本节完成发射子弹的功能,最终代码如下: image 首先,发射子弹得确定发射的位置和方向,还有发射的初始速度.具体的发射速度和按下发射按键的时间长短有关,这个关于子弹的蓄力我们在第九 ...
- TP里where的查询方式,比如or应该怎么写?
这应该是个基础..只是我没有系统的学TP,所以用到了临时查了手册. 正常来说,thinkphp里的查询方式是: ThinkPHP可以支持直接使用字符串作为查询条件,但是大多数情况推荐使用数组或者对象来 ...
- Centos7 安装与破解 Confluence 6.7.1
1.1硬件需求建议: CPU:32/64 bit 2.27GHz双核心以上之CPU: 内存:8GB以上: 硬盘:300GB,7200转以上: 建议数据库.Confluence等各自独立一台服务器(本测 ...
- eclipse xml文件中按alt+/没有提示信息
转载地址:http://blog.sina.com.cn/s/blog_972ddc1b01012mmh.html 今天要写这篇博文是因为遇到这样的不是技术的问题,但找到问题根源再解决这个问题又花费很 ...
- 分布式高并发下全局ID生成策略
数据在分片时,典型的是分库分表,就有一个全局ID生成的问题.单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求: 1 不能有单点故障. 2 以时间为序,或者ID里包含时间 ...
- caffe 预训练 或者Fine-Tuning 操作
1.使用预训练模型,需要修改训练的prototxt,将layer name改为与要使用模型的layer name相同即可. Borrowing Weights from a Pretrained Ne ...
- JS特效@缓动框架封装及应用
| 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.变量CSS样式属性获取/赋值方法 给属性赋值:(既能获取又能赋值) 1)div.style.width 单个赋值:点语法,这个方法比较固定 ...