【题目大意】

城市被东西向和南北向的主干道划分为n×n个区域,包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路。现得到了每天每条道路两个方向的人流量。每一个交叉路口都有海拔,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则不需要耗费体力。城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1。现在知道每条路两个方向的人流量,在最理想的情况下(即你可以任意假设其他路口的海拔高度),求每天所有人爬坡所消耗的总体力和的最小值。

【思路】

显然是一个平面图最小割,最基础的平面图最小割可以参考BZOJ1002狼爪兔子。转成对偶图,跑Dijkstra+堆优化。

问题在于,边是有向的(即两个方向的人流量是不同的),北南、南北、东西、西东应该如何对应对偶图中的方向呢?画了张图(我人生所有的画图都要献给平面图了……)

a

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define S 0
#define T (n*n)+1
using namespace std;
typedef long long ll;
const int MAXN=*;
const ll INF=;
struct edge
{
int fr,to,len;
};
vector<edge> E[MAXN];
int n; void addedge(int u,int v,int w)
{
E[u].push_back((edge){u,v,w});
} int dijkstra()
{
priority_queue<pair<ll,ll>,vector<pair<ll,ll> >,greater<pair<ll,ll> > > que;
ll dis[MAXN],vis[MAXN];
memset(vis,,sizeof(vis));
for (int i=S+;i<=T;i++) dis[i]=INF;
dis[S]=;
que.push(make_pair<ll,ll>(,S));
while (!que.empty())
{
int head=que.top().second;que.pop();
if (!vis[head])
{
vis[head]=;
for (int i=;i<E[head].size();i++)
{
edge Edge=E[head][i];
if (!vis[Edge.to] && dis[Edge.to]>dis[Edge.fr]+Edge.len)
{
dis[Edge.to]=dis[Edge.fr]+Edge.len;
que.push(make_pair<ll,ll>(dis[Edge.to],Edge.to));
}
}
}
}
return (dis[T]);
} void init()
{
scanf("%d",&n);
int t;
for (int i=;i<=n+;i++)
for (int j=;j<=n;j++)
{
scanf("%d",&t);
if (i==) addedge((i-)*n+j,n*n+,t);
else if (i==n+) addedge(,(i-)*n+j,t);
else addedge((i-)*n+j,(i-)*n+j,t);
} for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
scanf("%d",&t);
if (j==) addedge(,(i-)*n+j+,t);
else if (j==n) addedge(i*n,n*n+,t);
else addedge((i-)*n+j,(i-)*n+j+,t);
} for (int i=;i<=n+;i++)
for (int j=;j<=n;j++)
{
scanf("%d",&t);
if (i==) addedge(n*n+,(i-)*n+j,t);
else if (i==n+) addedge((n-)*n+j,,t);
else addedge((i-)*n+j,(i-)*n+j,t);
} for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
scanf("%d",&t);
if (j==) addedge((i-)*n+j+,,t);
else if (j==n) addedge(n*n+,(i-)*n+j,t);
else addedge((i-)*n+j+,(i-)*n+j,t);
} } int main()
{
init();
printf("%d\n",dijkstra());
return ;
}

【平面图最小割】BZOJ2007-[NOI2010]海拔的更多相关文章

  1. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  2. B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij

    B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...

  3. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

  4. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  5. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  6. [BZOJ2007][NOI2010]海拔(对偶图最短路)

    首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...

  7. tyvj P1209 - 拦截导弹 平面图最小割&&模型转化

    P1209 - 拦截导弹 From admin    Normal (OI)总时限:6s    内存限制:128MB    代码长度限制:64KB 背景 Background 实中编程者联盟为了培养技 ...

  8. hdu3870-Catch the Theves(平面图最小割)

    Problem Description A group of thieves is approaching a museum in the country of zjsxzy,now they are ...

  9. 【平面图最小割】BZOJ1001- [BeiJing2006]狼抓兔子

    [题目大意]左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) ...

随机推荐

  1. 使用RegSetValueEx修改注册表时遇到的问题(转)

    原文转自 http://blog.csdn.net/tracyzhongcf/article/details/4076870 1.今天在使用RegSetValueEx时发现一个问题: RegSetVa ...

  2. python进阶之类常用魔法方法和魔法属性

    前言 前面我们总结过了python的关键字.运算符.内置函数.语法糖等与python魔法方法之间的关系,现在我们更细一点,看看python的面向对象编程有哪些常用的魔法属性和魔法方法. 魔法属性 对于 ...

  3. kafka集群及监控部署

    1. kafka的定义 kafka是一个分布式消息系统,由linkedin使用scala编写,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础 ...

  4. wpf 查找 子元素

    RightContainer.ApplyTemplate();//如果找不到,就执行该句试一试 var xxx=UIHelper.FindChild<ScrollViewer>(Right ...

  5. [扩展推荐] Laravel 中利用 GeoIP 获取用户地理位置信息

    我最近需要一个用户地域检测来设置用户的默认区域和货币.由 Daniel Stainback 创建的 torann/geoip  很好地满足为Laravel 5 项目提供 GeoIP 服务的要求. 这个 ...

  6. MySQL通过rpm安装及其单机多实例部署

    1. CentOS 下安装 MySQL Oracle 收购 MySQL 后,CentOS 为避免 MySQL 闭源的风险,改用 MySQL 的分支 MariaDB:MariaDB 完全兼容 MySQL ...

  7. pycharm、webstorm和idea激活码

    pycharm ---> http://blog.csdn.net/kevinelstri/article/details/57413791 idea ---> http://idea.l ...

  8. mac上Python安装和修改Python默认路径遇到的问题

    此处例子是我使用homebrew安装了python3.6.1,建立一个符号链接,创建一个python3的命令,达到使用自己安装的python3的目的.此处不修改PATH,而是把需要添加的可执行文件或者 ...

  9. OSI & TCP/IP 参考模型

    OSI参考模型的结构 OSI划分七层结构的基本原则 网中各结点都具有相同的层次: 不同结点的同等层具有相同的功能: 同一结点内相邻层之间通过接口通信: 每一层可以使用下层提供的服务,并向其上层提供服务 ...

  10. 20165333实验一 JAVA开发环境的熟悉

    JAVA开发环境的熟悉-1 1建立"自己学号exp1"的目录 2 在"自己学号exp1"目录下建立src,bin等目录 3 javac,java的执行在&quo ...