import pandas as pd, numpy as np
dates = pd.date_range('', periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
1 mutate + ifelse
 df['E'] = np.where(df['D'] >= 0, '>=0', '<0')
df['F'] = np.random.randint(0, 2, 6)
df.assign(G = df.A * df.D) # 或者
df['F'] = df['F'].apply(str) #针对单列的
df.applymap(str) #这个相当于是mutate_each
2 table

 pd.value_counts(df["E"])
pd.pivot_table(df,index=['E','F'])
3 index 也就是取df的rownames,但与R不一样的在于,df可能有多维rownames
 df.index
df.set_index(['A'], drop = 0, append = 1) # 把已有的列设置为index,可保留之前的index,也可以把新的index在原数据中删除
df['dates'] = df.index # 新生成一列dates
df.reset_index(level=0, inplace=True) # 同上
df.reset_index(level=['index']) # 同上
4 删除列和行
 df = df.drop('index', axis = 1) # 可以删除多列
df.drop(df.index[[1,3]])

5 column names

 df.columns
df.columns = ['a', 'b', 'c', 'e', 'd', 'f'] # 重命名
df.rename(columns = {'A':'aa','B':'bb', 'C':'cc', 'D':'dd', 'E':'ee', 'F':'ff'}, inplace=True)
df.rename(columns=lambda x: x[1:].upper(), inplace=True) # 也可以用函数 inplace参数的意思就是代替原来的变量,深拷贝

6 哑变量 dummy variables
 pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies()
7 纯粹的df的矩阵,即不包含column和index
 df.values
df.get_values()
8 summary
 df.describe() # 只会针对数值型变量做计算
9 rbind
 df2=pd.DataFrame([[5,6],[7,8]],columns=list('AB'))
df.append(df2, ignore_index=True)
10 group by 分组汇总计算,和pivot_table类似
 df.groupby(['E','F']).mean()
df.groupby(['E','F']).agg(['sum', 'mean'])
pd.pivot_table(df,index=['E','F'], aggfunc=[np.sum, np.mean])
df.pivot_table(index=['E','F'], aggfunc=[np.sum, np.mean]) # 同上
df.groupby(['E','F']).agg({'A':['mean','sum'], 'B':'min'}) # groupby 也可以这样写
11 排序
 df.sort(['A','B'],ascending=[1,0]) # 按列排序,na_position控制NAN的位置
df.sort_index(ascending=0) # 按index排序
12 筛选
 df[(df.A >= -1) & (df.B <= 0)] # 值筛选
df[df.E.str.contains(">")] # 包含某个字符,contains筛选的其实是正则表达式
df[df.F.isin([''])] # 在列表内
13 变量选择
 df['A'] # 单个的列
df[0:3] # 行
df['':''] # 按index筛选
df.loc[:,] # 类似于R里面的dataframe选行和列的方法
df.iloc[:,] # iloc只能用数字了

Python基于pandas的数据处理(一)的更多相关文章

  1. Python基于pandas的数据处理(二)

    14 抽样 df.sample(10, replace = True) df.sample(3) df.sample(frac = 0.5) # 按比例抽样 df.sample(frac = 10, ...

  2. python – 基于pandas中的列中的值从DataFrame中选择行

    如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...

  3. 【python】pandas & matplotlib 数据处理 绘制曲面图

    Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形 建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择pytho ...

  4. python使用pandas进行数据处理

    pandas数据处理 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网址http://loc ...

  5. 基于 Python 和 Pandas 的数据分析(1)

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...

  6. 基于pandas python的美团某商家的评论销售数据分析(可视化)

    基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts i ...

  7. 基于 Python 和 Pandas 的数据分析(4) --- 建立数据集

    这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这 ...

  8. 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

    在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...

  9. python之pandas简单介绍及使用(一)

    python之pandas简单介绍及使用(一) 一. Pandas简介1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据 ...

随机推荐

  1. Spring Framework------>version4.3.5.RELAESE----->Reference Documentation学习心得----->Spring Framework的依赖注入和控制反转

    Dependency Injection and Inversion of Control 1.概述: 1.1相关概念 bean:由IoC容器所管理的对象,也即各个类实例化所得对象都叫做bean 控制 ...

  2. python积累

    python积累 一.逐渐积累 python逐渐积累 http://www.cnblogs.com/lx63blog/articles/6051526.html python积累_2 http://w ...

  3. libcurl 函数curl_easy_perform在release下崩溃的问题

    今天遇到一个很奇怪的问题: 工程中用到了libcurl, debug可以正常运行,release每次都崩溃,断到curl_easy_perform这一行.堆栈中也得不到有用信息,于是GOOGLE一番, ...

  4. WdatePicker日期控件的用法

    前台 <td height="25" width="*" align="left"> <asp:TextBox ID=&q ...

  5. 01 Apache Solr:提升检索体验 为什么是Solr

    背景:      最近开发一个大型的仓储管理平台项目,项目的前身是无数个版本的历史悠久的基于CS模式的Windows桌面程序.然后对于每一个客户,我们可能需要为之定制比较个性化的特殊功能.于是,有一个 ...

  6. Java使用正则表达式取网页中的一段内容(以取Js方法为例)

    关于正则表达式: 表1.常用的元字符 代码 说明 . 匹配除换行符以外的任意字符 \w 匹配字母或数字或下划线或汉字 \s 匹配任意的空白符 \d 匹配数字 \b 匹配单词的开始或结束 ^ 匹配字符串 ...

  7. Spring MVC CORS support

    使用详见: https://spring.io/blog/2015/06/08/cors-support-in-spring-framework 简单用法,在Controller 方法上加 @Cros ...

  8. 解決 java.security.cert.CertificateException: Certificates does not conform to algorithm constraints

    找到 jre/lib/security/java.security 将 jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048 ...

  9. windows下调用发送邮件程序项*发送邮件

    #include <windows.h>int _tmain(int argc, _TCHAR* argv[]){ ShellExecute(NULL, _T("open&quo ...

  10. 1、C语言基本数据类型

    1.分类如图: 2.大小如下 char                        1字节 short                      2字节 int                   ...