{HDU}{2516}{取石子游戏}{斐波那契博弈}
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家。
思路:斐波那契博弈,这个题的证明过程太精彩了!
一个重要的定理:任何正整数都可以表示为若干个不连续的斐波那契数的和。
一、归纳法证明斐波那契数列是必败点
为了方便,我们将n记为f[i]。
1、当i=2时,先手只能取1颗,显然必败,结论成立。
2、假设当i<=k时,结论成立。
则当i=k+1时,f[i] = f[k]+f[k-1]。
则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。
(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])
对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。
如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。
我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,对两值作差后不难得出,后者大。
所以我们得到,x<1/2*f[k]。
即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。
即i=k+1时,结论依然成立。
二、归纳法证明非斐波那契数为必胜点
将g[n]=f[a1]+f[a2]+...+f[ap],其中f[ai]为斐波那契数,先手取最小的堆f[ap],后手只能取f[a(p-1)],这样就成了面对后手先取斐波那契数的局面,必败,从而先手必胜。
不得不承认,这两步证明很nice,第一步证明的严谨,第二步证明的漂亮,大脑运作的还不是很快啊~
=================================================================================================
特别感谢:
http://blog.csdn.net/acm_cxlove/article/details/7835016
http://blog.csdn.net/dgq8211/article/details/7602807
http://yjq24.blogbus.com/logs/46150651.html
=======================================================================================================
{HDU}{2516}{取石子游戏}{斐波那契博弈}的更多相关文章
- HDU 2516 取石子游戏 斐波纳契博弈
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- 题解报告:hdu 2516 取石子游戏(斐波那契博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...
- hdu 2516 取石子游戏 (斐波那契博弈)
题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...
- HDU 2516 取石子游戏 (找规律)
题目链接 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...
- HDU.2516.取石子游戏(博弈论 Fibonacci Nim)
题目链接 \(Description\) 1堆石子有n个.两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍,取完者胜.问谁能赢. \(Solution ...
- HDU 2516 取石子游戏(斐波那契)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- HDU 2516 取石子游戏 (博弈论)
取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...
随机推荐
- 主工程中合并库工程的Manifest文件
修改project属性文件中的 manifestmerger.enabled=true,就可以实现Android Manifest的合并. 主要用于lib工程和主工程之间. eg: target=an ...
- java动态绑定的一点注意
动态绑定只是针对对象的方法,对于属性无效.因为属性不能被重写. show me code: public class Father{ public String name = "父亲属性&q ...
- Java生成XML文件
我们在数据库中的数据可以将其提取出来生成XML文件,方便传输.例如数据库中有Admin这张表: 我们写一个java类表示admin数据: package xmlDom.vo; import java. ...
- eclipse 添加 hibernate 插件
eclipse helios(3.6)版 1.启动eclipse 2.选择Help > Install New Software...> 3.添加如下地址:http://download. ...
- Python基础篇【第3篇】: Python正则表达式
正则表达式 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.正则表达式是一个特殊的 ...
- C++设计模式-Prototype原型模式
作用: 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. Prototype模式提供了一个通过已存在对象进行新对象创建的接口(Clone), Clone()实现和具体的语言相关,在C+ ...
- gdb 调试
一.gdb 调试-源代码关联 在调试程序的过程中,可以自由地查看相关的源代码(如果有源代码的话)是一项最基本的特性.gdb 当然也提供了这项特性,虽然不如IDE直观,但在一定程度上要比IDE更加灵活和 ...
- HTML5 File详解
input file控件限制上传文件类型 Html5 FileReader 对文件进行Base64编码 FileReader.readAsDataURL
- Hibernate单元测试工具junit
相关注解 @Text :测试方法 @Before :初始化方法 @After : 释放资源
- 前端菜鸟的编程之路之css的用法
/* * * 固定特殊类 * */ /* ===========固定宽度*============= */ .ld-with80{width: 80px} .ld-with50{width: 50px ...