Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4604    Accepted Submission(s): 3461

Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
 一个简单的矩阵快速幂,刚学 拿来练模版(网上随便找了个,可惜没找到结构体的那个)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<string.h>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const int num=;
const int mod=;
int N;
struct Mat{
int a[num][num];
void init(){
memset(a,,sizeof(a));
for(int i=;i<num;i++)
a[i][i]=;
}
};
//矩阵加法
Mat add(Mat a,Mat b){
Mat ans;
for(int i=;i<N;i++)
for(int j=;j<N;j++){
ans.a[i][j]=a.a[i][j]+b.a[i][j];
ans.a[i][j]=ans.a[i][j]%mod;
}
return ans;
}
//矩阵乘法
Mat mul(Mat a,Mat b){
Mat ans;
for(int i=;i<N;i++){
for(int j=;j<N;j++){
ans.a[i][j]=;
for(int k=;k<N;k++){
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
}
ans.a[i][j]=ans.a[i][j]%mod;
}
}
return ans;
}
//矩阵快速幂
Mat power(Mat a,int n){
Mat ans;
ans.init();
while(n){
if(n&){
ans=mul(ans,a);
}
n=n>>;
a=mul(a,a);
}
return ans;
}
//矩阵的幂和
Mat pow_sum(Mat a,int n){
int m;
Mat ans,pre;
if(n==){
return a;
}
m=n/;
pre=pow_sum(a,m);
ans=add(pre,mul(pre,power(a,m)));
if(n&)
ans=add(ans,power(a,n));
return ans;
}
void output(Mat a){
for(int i=;i<N;i++){
for(int j=;j<N;j++){
if(j==)printf("%d",a.a[i][j]);
else printf(" %d",a.a[i][j]);
}
printf("\n");
}
}
int main(){
int tt;
int k,n;
scanf("%d",&tt);
while(tt--){
int t=;
scanf("%d%d",&n,&k);
Mat a;
N=n;
for(int i=;i<N;i++){
for(int j=;j<N;j++)
scanf("%d",&a.a[i][j]);
}
Mat ans=power(a,k);
//output(ans);
for(int i=;i<N;i++){
t=(t+ans.a[i][i])%mod;
}
printf("%d\n",t);
}
return ;
}

HDU 1575的更多相关文章

  1. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  2. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  3. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  4. hdu 1575 Tr A

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和), ...

  5. HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Me ...

  6. hdu 1575 Tr A(矩阵快速幂乘法优化算法)

    Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n ...

  7. HDU 1575 Tr A----矩阵相乘题。

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  8. hdu 1575 Tr A (二分矩阵)

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. hdu 1575 矩阵快速幂模板

    #include "iostream" #include "vector" #include "cstring" using namespa ...

随机推荐

  1. oracle删除users表空间

    1.users表空间一般情况下是默认的,需将别的空间设置成默认,再删除users表空间(oracle不允许删除默认空间的). 2.删除表空间的同时会报这样的错:ORA-22868错误.原因:推断应该存 ...

  2. Java学习基础1

    Java 平台: Java API JVM  特点:可跨平台  Java 运行机制:           编译                         运行 Java文件-------> ...

  3. python之路-Day11

    引子 到目前为止,我们已经学了网络并发编程的2个套路, 多进程,多线程,这哥俩的优势和劣势都非常的明显,我们一起来回顾下 协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程: ...

  4. libpng安装与配置(Win7+VS2010)

    一.下载 libpng:http://libmng.com/pub/png/libpng.html zlib:http://www.zlib.net/ IDE:VS2010 二.编译 将下载的两个zi ...

  5. yum -y upgrade 和 yum -y update 区别

    分别测试yum -y upgrade和yum -y update 升级前 系统版本: CentOS5.5 内核版本: 2.6.18-194.el5 升级前做过简单配置文件修改 yum -y upgra ...

  6. Markdown 快速入门

    使用Markdown编辑器:MarkdownPad 2 标题: # 标题 ## 标题 ### 标题 #### 标题 ##### 标题 ###### 标题 效果: 标题 标题 标题 标题 标题 标题 下 ...

  7. Redis(三)节省内部空间优化

    总体原则:key的名称不易过长,剩下的所有 能用纯数字表示的尽量用 Redis的每一个键值都是用一个redisObject结构体表示的结构体中有:    键值的类型(string/list/hash/ ...

  8. 微软软件开发技术二十年回顾-COM、OLE、ActiveX及COM+篇

    本文摘自:http://www.job168.com/info/read_100394.html 微软的许多技术,如OLE.ActiveX.以及DirectX等都是基于COM技术而建立起来的.微软本身 ...

  9. 自动验证是ThinkPHP

    自动验证是ThinkPHP模型层提供的一种数据验证方法,可以在使用create创建数据对象的时候自动进行数据验证. 数据验证有两种方式: 静态方式:在模型类里面通过$_validate属性定义验证规则 ...

  10. silverlight控件阴影效果示例

    <ScrollViewer MaxHeight="400" VerticalScrollBarVisibility="Auto" HorizontalSc ...