code vs 1098 均分纸牌(贪心)
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘
4
9 8 17 6
3
e
分类标签 Tags 点此展开
思路:贪心从左向右遍历,如果遍历到的数字超过平均值,把该数变为平均值,下一个数+超出的数;如果数不到平均值,就从下个数中取,下个数-(平均数-上个数);
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,a[],sum,pj,ans;
int main()
{
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
sum+=a[i];
}
pj=sum/n;
for(int i=;i<=n;i++){
if(a[i]<pj){
a[i+]=a[i+]-(pj-a[i]);
a[i]=pj;
ans++;
}
if(a[i]>pj){
a[i+]=a[i+]+(a[i]-pj);
a[i]=pj;
ans++;
}
}
cout<<ans;
}
如果对你有所帮助,别忘了加好评哦;么么哒!!下次见!88
code vs 1098 均分纸牌(贪心)的更多相关文章
- wikioi 1098 均分纸牌
题目描述 Description 有 N 堆纸牌,编号分别为 1,2,-, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...
- codevs 1098 均分纸牌 2002年NOIP全国联赛提高组 x
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必 ...
- Codevs 均分纸牌(贪心)
题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...
- 【洛谷p1031】均分纸牌
[博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 【题解】P1440 均分纸牌
均分纸牌 题目描述: 有\(N\)堆纸牌,编号分别为\(1,2,-,N\).每堆上有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为\(1\)堆上取 ...
- NOIP200205均分纸牌
均分纸牌 描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张 ...
- NOIP2002 均分纸牌
题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为: ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
随机推荐
- [原创开源项目]EPUBBuilder一款在线的epub电子书编辑工具
epub 感觉自己么么哒, epub书:国外最流行的电子书格式: epub电子书介绍: epub全称为Electronic Publication的缩写,意为:电子出版, epub于2007年9月成为 ...
- js压缩xml字符串,将xml字符串转换为xml对象,将xml对象转换为json对象
/** * 压缩xml字符串 */ function compressXmlStr(str){ var prefix, suffix; var i = str.indexOf("\r&quo ...
- iTestSharp的简单应用
前言 最近公司某项目要针对一些信息基础表绘画成表格的形式然后生成pdf文件,在网上寻找到iTestSharp发现此类库很强大,虽然园子里已经有很多大牛写了关于此插件的使用方法,但是自己也想写一写,把自 ...
- 【20160722-20160728】NOI2016滚粗记&&酱油记&&游记
先挖坑 #include <cstdio> using namespace std; int main(){ puts("转载请注明出处:http://www.cnblogs.c ...
- 小猪cms之怎样查询绑定的微网站模板
微网站内容页面url g=Wap&m=Index&a=content (g=Wap)模块路径对应路径:\PigCms\Lib\Action\Wap (m=Index)控制文件对应文件: ...
- java第二周周学习总结
java运算符和循环 java运算符 一.for 语句 for 语句的基本结构如下所示:for(初始化表达式;判断表达式;递增(递减)表达式){ 执行语句; //一段代码} 初始化表达式:初 ...
- BZOJ 1227: [SDOI2009]虔诚的墓主人
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 1078 Solved: 510[Submit][Stat ...
- Android 天猫apk聊天数据库解密
1.使用Android 天猫apk 进行聊天会产生tmallWangXinDB的数据库.2.用sqlite3 工具打开提示加密或者错误.3.需要对该数据库进行解密. 解密流程:1.反编译apk,dex ...
- note
John的博客 http://blog.sina.com.cn/chinatownjohn 剑4-11真题+新东方pdf,王陆语料库(听力)+顾家北手把手教你写剑9版(写作)+人人雅思哥记忆卡(口语) ...
- UVA 624CD(01背包输出 + 输出路径)
You have a long drive by car ahead. You have a tape recorder, but unfortunately your best music is o ...