MapReduce C++ Library for single-machine, multicore applications

Distributed and scalable computing disciplines have recognized that immutable data, lock free access, and isolated data processing is not only inevitable across a number of machines, but has significant benefits for reliability and scalability. These benefit can be fostered in application design to improve reliability and take advantage of increasingly multi-core processor that are available on end-user devices as well as server machines.

MapReduce is an architecture framework designed for creating and processing large volumes of data using clusters of computers. For background information on MapReduce see Software Scalability with MapReduce.

An important development from Google's original paper is in applying MapReduce to parallel processing on multi-core environments such as multi-core and multi-processor machines and graphics processors (GPUs).

The scalability achieved using MapReduce to implement data processing across a large volume of machines with low implementation costs motivates the design of this library. By taking the principles that have been proven in a distributed MapReduce system and applying them to a single-machine, multicore implementation, reliability and execution efficiency can be attained in a reusable framework. In scaling down the architecture from multi-machine to multi-CPU or multi-core, threads of execution become analogous to machines in a distributed environment as a unit of process execution.

The MapReduce C++ Library implements a single-machine platform for programming using the the Google MapReduce idiom. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real world tasks are expressible in this model, as shown in the Google paper.

  map (k1,v1) --> list(k2,v2)
reduce (k2,list(v2)) --> list(v2)

Synopsis

namespace mapreduce {

template<typename MapTask,
typename ReduceTask,
typename Datasource=datasource::directory_iterator<MapTask>,
typename Combiner=null_combiner,
typename IntermediateStore=intermediates::local_disk<MapTask> >
class job; } // namespace mapreduce

The developer is required to write two classes; MapTask implements a mapping function to process key/value pairs generate a set of intermediate key/value pairs and ReduceTask that implements a reduce function to merges all intermediate values associated with the same intermediate key.

In addition, there are three optional template parameters that can be used to modify the default implementation behavior; Datasource that implements a mechanism to feed data to the Map Tasks - on request of the MapReduce libraryCombiner that can be used to partially consolidate results of the Map Task before they are passed to the Reduce Tasks, and IntermediateStore that handles storage, merging and sorting of intermediate results between the Map and Reduce phases.

The MapTask class must define four data types; the key/value types for the inputs to the Map Tasks and the intermediate types.

class map_task
{
public:
typedef std::string key_type;
typedef std::ifstream value_type;
typedef std::string intermediate_key_type;
typedef unsigned intermediate_value_type; map_task(job::map_task_runner &runner);
void operator()(key_type const &key, value_type const &value);
}:

The ReduceTask must define the key/value types for the results of the Reduce phase.

class reduce_task
{
public:
typedef std::string key_type;
typedef size_t value_type; reduce_task(job::reduce_task_runner &runner); template<typename It>
void operator()(typename map_task::intermediate_key_type const &key, It it, It ite)
}:

Extensibility

The library is designed to be extensible and configurable through a Policy-based mechanism. Default implementations are provided to enable the library user to run MapReduce simply by implementing the core Map and Reduce tasks, but can be replaced to provide specific features.

Policy   Application   Supplied Implementation(s)
Datasource  

mapreduce::job template parameter

  datasource::directory_iterator<MapTask>
Combiner  

mapreduce::job template parameter

  null_combiner
IntermediateStore  

mapreduce::job template parameter

  local_disk<MapTask, SortFn, MergeFn>
SortFn  

local_disk template parameter

  external_file_sort

MergeFn

 

local_disk template parameter

  external_file_merge
SchedulePolicy  

mapreduce::job::run() template parameter

 

cpu_parallelsequential

Datasource

This policy implements a data provider for Map Tasks. The default implementation iterates a given directory and feeds each Map Task with a Filename and std::ifstream to the open file as a key/value pair.

Combiner

A Combiner is an optimization technique, originally designed to reduce network traffic by applying a local reduction of intermediate key/value pairs in the Map phase before being passed to the Reduce phase. The combiner is optional, and can actually degrade performance on a single machine implementation due to the additional file sorting that is required. The default is therefore a null_combiner which does nothing.

IntermediateStore

The policy class implements the behavior for storing, sorting and merging intermediate results between the Map and Reduce phases. The default implementation uses temporary files on the local filesystem.

SortFn

Used to sort external intermediate files. Current default implementation uses a system() call to shell out to the operating system SORT process. A Merge Sort implementation is currently in development.

MergeFn

Used to merge external intermediate files. Current default implementation uses a system() call to shell out to the operating system COPY process (Win32 only). A platform independent in-process implementation is required.

SchedulePolicy

This policy is the core of the scheduling algorithm and runs the Map and Reduce Tasks. Two schedule policies are supplied, cpu_parallel uses the maximum available CPU cores to run as many map simultaneous tasks as possible (within a limit given in the mapreduce::specification object). The sequential scheduler will run one map task followed by one reduce task, which is useful for debugging purposes.

Example - WordCount

Below is a simplified - but complete - WordCount example using the library. Error checking is removed and a simplified definition of a 'word' is used for brevity.

namespace wordcount {

class map_task;
class reduce_task; typedef
mapreduce::job<
wordcount::map_task,
wordcount::reduce_task>
job; class map_task : boost::noncopyable
{
public:
typedef std::string key_type;
typedef std::ifstream value_type;
typedef std::string intermediate_key_type;
typedef unsigned intermediate_value_type; map_task(job::map_task_runner &runner)
: runner_(runner)
{
} // 'value_type' is not a reference to const to enable streams to be passed
// key: input filename
// value: ifstream of the open file
void operator()(key_type const &/*key*/, value_type &value)
{
while (!value.eof())
{
std::string word;
value >> word;
std::transform(word.begin(), word.end(), word.begin(),
std::bind1st(
std::mem_fun(&std::ctype<char>::tolower),
&std::use_facet<std::ctype<char> >(std::locale::classic()))); runner_.emit_intermediate(word, 1);
}
} private:
job::map_task_runner &runner_;
}; class reduce_task : boost::noncopyable
{
public:
typedef std::string key_type;
typedef size_t value_type; reduce_task(job::reduce_task_runner &runner)
: runner_(runner)
{
} template<typename It>
void operator()(typename map_task::intermediate_key_type const &key, It it, It ite)
{
reduce_task::value_type result = 0;
for (; it!=ite; ++it)
result += *it;
runner_.emit(key, result);
} private:
job::reduce_task_runner &runner_;
}; } // namespace wordcount int main(int argc, char **argv)
{
wordcount::job::datasource_type datasource;
datasource.set_directory(argv[1]); mapreduce::specification spec;
mapreduce::results result;
wordcount::job mr(datasource);
mr.run<mapreduce::schedule_policy::cpu_parallel>(spec, result); // output the results
std::cout << std::endl << "\n" << "MapReduce statistics:";
std::cout << "\n " << "MapReduce job runtime : " << result.job_runtime << " seconds, of which...";
std::cout << "\n " << " Map phase runtime : " << result.map_runtime << " seconds";
std::cout << "\n " << " Reduce phase runtime : " << result.reduce_runtime << " seconds";
std::cout << "\n\n " << "Map:";
std::cout << "\n " << "Total Map keys : " << result.counters.map_tasks;
std::cout << "\n " << "Map keys processed : " << result.counters.map_tasks_completed;
std::cout << "\n " << "Map key processing errors : " << result.counters.map_tasks_error;
std::cout << "\n " << "Number of Map Tasks run (in parallel) : " << result.counters.actual_map_tasks;
std::cout << "\n " << "Fastest Map key processed in : " << *std::min_element(result.map_times.begin(), result.map_times.end()) << " seconds";
std::cout << "\n " << "Slowest Map key processed in : " << *std::max_element(result.map_times.begin(), result.map_times.end()) << " seconds";
std::cout << "\n " << "Average time to process Map keys : " << std::accumulate(result.map_times.begin(), result.map_times.end(), boost::int64_t()) / result.map_times.size() << " seconds";
std::cout << "\n\n " << "Reduce:";
std::cout << "\n " << "Number of Reduce Tasks run (in parallel): " << result.counters.actual_reduce_tasks;
std::cout << "\n " << "Number of Result Files : " << result.counters.num_result_files;
std::cout << "\n " << "Fastest Reduce key processed in : " << *std::min_element(result.reduce_times.begin(), result.reduce_times.end()) << " seconds";
std::cout << "\n " << "Slowest Reduce key processed in : " << *std::max_element(result.reduce_times.begin(), result.reduce_times.end()) << " seconds";
std::cout << "\n " << "Average time to process Reduce keys : " << std::accumulate(result.reduce_times.begin(), result.reduce_times.end(), boost::int64_t()) / result.map_times.size() << " seconds"; return 0;
}

Performance

Here are some results running the WordCount example on the Westbury Lab USENET corpus (2005) containing 9.92 GB (10,659,287,688 bytes) of data in 23 files.

Sequential MapReduce

The sequential schedulig algorithm gives a baseline timing for the WordCount implementation, running a single Map task followed by a single Reduce task.

MapReduce Wordcount Application
16 CPU cores
class mapreduce::job<class wordcount::map_task,class wordcount::reduce_task,struct mapreduce::null_c
ombiner,class mapreduce::datasource::directory_iterator<class wordcount::map_task>,class mapreduce::
intermediates::local_disk<class wordcount::map_task,struct win32::external_file_sort,struct win32::e
xternal_file_merge> > Running Sequential MapReduce...
Finished. MapReduce statistics:
MapReduce job runtime : 3105 seconds, of which...
Map phase runtime : 699 seconds
Reduce phase runtime : 2406 seconds Map:
Total Map keys : 23
Map keys processed : 23
Map key processing errors : 0
Number of Map Tasks run (in parallel) : 1
Fastest Map key processed in : 0 seconds
Slowest Map key processed in : 96 seconds
Average time to process Map keys : 30 seconds Reduce:
Number of Reduce Tasks run (in parallel): 1
Number of Result Files : 10
Fastest Reduce key processed in : 161 seconds
Slowest Reduce key processed in : 390 seconds
Average time to process Reduce keys : 104 seconds

CPU Parallel

Running on a 16 CPU-core Windows server, using all core for Map tasks, produces the following results:

MapReduce Wordcount Application
16 CPU cores
class mapreduce::job,class mapreduce::
intermediates::local_disk > Running CPU Parallel MapReduce...
CPU Parallel MapReduce Finished. MapReduce statistics:
MapReduce job runtime : 1608 seconds, of which...
Map phase runtime : 842 seconds
Reduce phase runtime : 766 seconds Map:
Total Map keys : 23
Map keys processed : 23
Map key processing errors : 0
Number of Map Tasks run (in parallel) : 16
Fastest Map key processed in : 0 seconds
Slowest Map key processed in : 842 seconds
Average time to process Map keys : 433 seconds Reduce:
Number of Reduce Tasks run (in parallel): 10
Number of Result Files : 10
Fastest Reduce key processed in : 384 seconds
Slowest Reduce key processed in : 766 seconds
Average time to process Reduce keys : 261 seconds

Running on the same server, restricting the number of Map task to 8 yields:

MapReduce Wordcount Application
16 CPU cores
class mapreduce::job<class wordcount::map_task,class wordcount::reduce_task,struct mapreduce::null_c
ombiner,class mapreduce::datasource::directory_iterator<class wordcount::map_task>,class mapreduce::
intermediates::local_disk<class wordcount::map_task,struct win32::external_file_sort,struct win32::e
xternal_file_merge> > Running CPU Parallel MapReduce...
CPU Parallel MapReduce Finished. MapReduce statistics:
MapReduce job runtime : 1743 seconds, of which...
Map phase runtime : 950 seconds
Reduce phase runtime : 793 seconds Map:
Total Map keys : 23
Map keys processed : 23
Map key processing errors : 0
Number of Map Tasks run (in parallel) : 8
Fastest Map key processed in : 0 seconds
Slowest Map key processed in : 934 seconds
Average time to process Map keys : 303 seconds Reduce:
Number of Reduce Tasks run (in parallel): 10
Number of Result Files : 10
Fastest Reduce key processed in : 396 seconds
Slowest Reduce key processed in : 793 seconds
Average time to process Reduce keys : 271 seconds

MapReduce C++ Library的更多相关文章

  1. Type Archive for required library: 'C:/Users/EuphemiaShaw/.m2/repository/org/apache/hadoop/hadoop-hdfs/2.6.5/hadoop-hdfs-2.6.5.jar' in project 'mapreduce' cannot be read or is not a valid ZIP file

    error: Description Resource Path Location Type Archive for required library: 'C:/Users/EuphemiaShaw/ ...

  2. Linux上搭建Hadoop2.6.3集群以及WIN7通过Eclipse开发MapReduce的demo

    近期为了分析国内航空旅游业常见安全漏洞,想到了用大数据来分析,其实数据也不大,只是生产项目没有使用Hadoop,因此这里实际使用一次. 先看一下通过hadoop分析后的结果吧,最终通过hadoop分析 ...

  3. Hadoop学习笔记—4.初识MapReduce

    一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...

  4. Hadoop官方文档翻译——MapReduce Tutorial

    MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...

  5. Hadoop 学习笔记3 Develping MapReduce

    小笔记: Mavon是一种项目管理工具,通过xml配置来设置项目信息. Mavon POM(project of model). Steps: 1. set up and configure the ...

  6. 《转载》化繁为简 如何向老婆解释MapReduce?

    本文转载自http://server.zol.com.cn/329/3295529.html 昨天,我在Xebia印度办公室发表了一个关于MapReduce的演说.演说进行得很顺利,听众们都能够理解M ...

  7. MapReduce应用案例--简单排序

    1. 设计思路 在MapReduce过程中自带有排序,可以使用这个默认的排序达到我们的目的. MapReduce 是按照key值进行排序的,我们在Map过程中将读入的数据转化成IntWritable类 ...

  8. 化繁为简 如何向老婆解释MapReduce?(转载)

    化繁为简 如何向老婆解释MapReduce? 昨天,我在Xebia印度办公室发表了一个关于MapReduce的演说.演说进行得很顺利,听众们都能够理解MapReduce的概念(根据他们的反馈).我成功 ...

  9. 从hadoop框架与MapReduce模式中谈海量数据处理

    http://blog.csdn.net/wind19/article/details/7716326 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显 ...

随机推荐

  1. Invalid /admin/*.jsp in filter mapping

    完成错误信息 严重: A child container failed during start java.util.concurrent.ExecutionException: org.apache ...

  2. 单目标优化问题 常用的 测试函数(MATLAB版)

    ############################################### #                测试函数                     # ######## ...

  3. ubuntu16.04 中文输入法

    https://blog.csdn.net/qq_21792169/article/details/53152700 在主文件夹目录即home目录,按快捷键Ctrl+H(显示隐藏文件),看到的.bas ...

  4. HDU 5499:SDOI

    SDOI Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Sub ...

  5. wireshark 抓包过滤器

    wireshark 抓包过滤器 https://www.cnblogs.com/laoxiajiadeyun/p/10365073.html 过滤器分为抓包过滤器和显示过滤器,抓包过滤器会将不满足过滤 ...

  6. test20180828

    所有试题限制都为512MB,1Sec 总分230. 试题1 新的开始 [题目描述] 发展采矿业当然首先得有矿井, 小FF花了上次探险获得的千分之一的财富请人在岛上挖了n口矿井, 但他似乎忘记考虑的矿井 ...

  7. ES6 — 箭头函数

    一 为什么要有箭头函数 我们在日常开发中,可能会需要写类似下面的代码 const Person = { 'name': 'little bear', 'age': 18, 'sayHello': fu ...

  8. 自定义django的admin后台action

    django的admin后台管理系统中自带了一个批量删除所选对象的action. 我们还可以添加自定义的action来实现其它类似的功能,如批量修改某个字段的功能.简单的,例如将文章批量标记为已发布的 ...

  9. php 图片剪切

    <?php /** * 图像裁剪 * @param $source_path 原图路径 * @param $target_width 需要裁剪的宽 * @param $target_height ...

  10. PHP接收表单(GET/POST)时,表单名中的点变成了下划线怎么办?

    如果开发中发现,从表单中传递上来的表单名称后端接不到值,不要惊慌,很有可能是表单名称中带有特殊字符(.和空格) PHP接收参数时,发现表单名中如果是 句号(.)或者空格( ),会被转换成下划线(_) ...