poj 2096

题目:http://poj.org/problem?id=2096

f[ i ][ j ] 表示收集了 i 个 n 的那个、 j 个 s 的那个的期望步数。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int N=;
db n,s,f[N][N];
int main()
{
scanf("%lf%lf",&n,&s);db ml=n*s;
for(int i=n;i>=;i--)
for(int j=s;j>=;j--)
{
if(i==n&&j==s)continue;
if(i<n)f[i][j]+=(n-i)*j/ml*f[i+][j];
if(j<s)f[i][j]+=i*(s-j)/ml*f[i][j+];
if(i<n&&j<s)f[i][j]+=(n-i)*(s-j)/ml*f[i+][j+];
f[i][j]+=;
f[i][j]*=ml/(ml-i*j);
}
printf("%.4f\n",f[][]);
return ;
}

ZOJ 3329

题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754

高斯消元好像时间复杂度太高。

注意到每个位置都可以从 dp[ 0 ] 转移过来,所以可以想到每个 dp[ i ] 都可以表示成 a[ i ]*dp[ 0 ] + b[ i ] 的形式;这样如果算出了 a[ 0 ] 和 b[ 0 ] ,就能直接算出 dp[ 0 ] 了。

\( dp[i]=a[i]*dp[0]+b[i] \)

\( dp[i]=\sum\limits_{j=1}^{k}dp[i+j]*p[j] + dp[0]*p[0] + 1 \)

\( dp[i]=\sum\limits_{j=1}^{k}(a[i+j]*p[j]*dp[0]+b[i+j]*p[j]) + dp[0]*p[0] + 1 \)

\( dp[i]=((\sum\limits_{j=1}^{k}a[i+j]*p[j])+p[0])dp[0]+(\sum\limits_{j=1}^{k}b[i][j]*p[j])+1 \)

所以 \( a[i]=(\sum\limits_{j=1}^{k}a[i+j]*p[j])+p[0] \) , \( b[i]=(\sum\limits_{j=1}^{k}b[i][j]*p[j])+1 \)

注意多组数据的清零。空间不是 505 而是 525 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=,M=;
int n,c[],t[]; db p[M],a[N],b[N];
int main()
{
int T=rdn();
while(T--)
{
n=rdn();for(int i=;i<=;i++)c[i]=rdn();
for(int i=;i<=;i++)t[i]=rdn();
db tp=1.0/(c[]*c[]*c[]); p[]=tp;
int lm=c[]+c[]+c[];
for(int i=;i<=lm;i++)p[i]=;//
for(int i=;i<=c[];i++)
for(int j=;j<=c[];j++)
for(int k=;k<=c[];k++)
{
if(i==t[]&&j==t[]&&k==t[])continue;
p[i+j+k]+=tp;
}
for(int i=;i<=n;i++)a[i]=p[],b[i]=;
for(int i=n+,j=n+lm;i<=j;i++)a[i]=b[i]=;////
for(int i=n;i>=;i--)
for(int j=;j<=lm;j++)
a[i]+=a[i+j]*p[j],b[i]+=b[i+j]*p[j];
printf("%.10f\n",b[]/(-a[]));
}
return ;
}

hdu 4035

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4035

设 f[ i ] 表示现在在 i 号点,期望走几步离开迷宫。

数据范围无法高斯消元。

考虑把 f[ i ] 表示成 a[ i ] * f[ 1 ] + b[ i ] 的形式,这样才能在知道系数之后算出 f[ 1 ] 。它是从 1 号点开始走的,所以应该能表示成这样。

只是这样的话,转移还是没有顺序的。所以考虑把 f[ i ] 表示成 a[ i ] * f[ 1 ] + b[ i ] * f[ fa ] + c[ i ] 的形式。

\( f[i] = k[i]*f[1]+e[i]*0 + \frac{1-k[i]-e[i]}{d[i]}(f[fa]+1) + \frac{1-k[i]-e[i]}{d[i]}\sum\limits_{j \in child}(f[j]+1) \)

\( f[i] = a[i]*f[1]+b[i]*f[fa]+c[i] \)   令 \( s[i]=\frac{1-k[i]-e[i]}{d[i]} \)

\( f[i]=k[i]*f[1]+s[i]*f[fa]+s[i]+(d[i]-1])s[i]+s[i]\sum\limits_{j \in child}(a[j]*f[1]+b[j]*f[i]+c[j]) \)

\( f[i]=k[i]*f[1]+s[i]*f[fa]+d[i]*s[i]+s[i]\sum\limits_{j \in child}a[j]*f[1]+s[i]\sum\limits_{j \in child}b[j]*f[i]+s[i]\sum\limits_{j \in child}c[j] \)

\( (1-s[i]\sum\limits_{j \in child}f[i]=(k[i]+s[i]\sum\limits_{j \in child}a[j])f[1]+s[i]*f[fa]+d[i]*s[i]+s[i]\sum\limits_{j \in child}c[j] \)

答案就是 \( \frac{c[1]}{1-a[1]} \) 。当 \( 1 = a[1] \) 时无解。

精度开成 1e-8 会 WA , 1e-9 就可以了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=1e4+;const db eps=1e-;
int n,hd[N],xnt,to[N<<],nxt[N<<],d[N];db k[N],e[N],s[N],a[N],b[N],c[N];
void add(int x,int y){to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;d[x]++;}
void dfs(int cr,int fa)
{
db tp=;
for(int i=hd[cr],v;i;i=nxt[i])
if((v=to[i])!=fa)
{
dfs(v,cr);a[cr]+=a[v];c[cr]+=c[v];tp+=b[v];
}
a[cr]=a[cr]*s[cr]+k[cr]; b[cr]=s[cr]; c[cr]=c[cr]*s[cr]+d[cr]*s[cr];
tp=-tp*s[cr];
a[cr]/=tp; b[cr]/=tp; c[cr]/=tp;
}
int main()
{
int T=rdn();
for(int t=;t<=T;t++)
{
n=rdn();memset(hd,,sizeof hd);xnt=;
for(int i=;i<=n;i++)d[i]=;
for(int i=,u,v;i<n;i++)
u=rdn(),v=rdn(),add(u,v),add(v,u);
for(int i=;i<=n;i++)
{
k[i]=(db)rdn()/;e[i]=(db)rdn()/;
s[i]=(-k[i]-e[i])/d[i];
a[i]=b[i]=c[i]=;
}
dfs(,); printf("Case %d: ",t);
if(fabs(-a[])<=eps)puts("impossible");
else printf("%.10f\n",c[]/(-a[]));
}
return ;
}

poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP的更多相关文章

  1. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  2. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  3. POJ 2096 Collecting Bugs

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1716   Accepted: 783 C ...

  4. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  5. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  6. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  7. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  8. POJ 2096 Collecting Bugs:期望dp

    题目链接:http://poj.org/problem?id=2096 题意: 有一个程序猿,他每天都会发现一个bug. bug共有n个种类.属于某一个种类的概率为1/n. 有s个子系统,每个bug属 ...

  9. poj 2096 Collecting Bugs - 概率与期望 - 动态规划

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

随机推荐

  1. 在菜鸟教程学 HTML(一)

    注意:对于中文网页需要使用 <meta charset="utf-8"> 声明编码,否则会出现乱码.有些浏览器会设置 GBK 为默认编码,则你需要设置为 <met ...

  2. OC @property @synthesize和id

    文顶顶   OC语言@property @synthesize和id OC语言@property @synthesize和id 一.@property @synthesize关键字 注意:这两个关键字 ...

  3. vs2015 企业版、专业版如何破解(秘钥)

    安装完vs2015 企业版后,在菜单帮助---注册产品,显示产品试用期30天,怎么破解呢? 一.破解秘钥 企业版    HM6NR-QXX7C-DFW2Y-8B82K-WTYJV 专业版    HMG ...

  4. ASCII码表(0-127 ) C中的转义字符

    所有的ASCII码都可以用“\”加数字(一般是8进制数字)来表示.而C中定义了一些字母前加"\"来表示常见的那些不能显示的ASCII字符,如\0,\t,\n等,就称为转义字符,因为 ...

  5. hadoop mongodb install(3)

    reference:http://dblab.xmu.edu.cn/blog/868-2/ root@iZuf68496ttdogcxs22w6sZ:~# mv mongodb-linux-x86_6 ...

  6. Flask初级(七)flash模板循环,判断

    Project name :Flask_Plan templates:templates static:static 继续前面的代码 修改Flask_Plan.py @app.route('/') d ...

  7. centos7 vsftp的安装

    首先下载vsftp yum install -y vsftpd 安装好了之后 编辑默认的文件 vi /etc/vsftpd/vsftpd.conf 更改下面的: anonymous_enable=NO ...

  8. vim/vi用法总结

    第一章:安装: 在命令行运行vim,如果找不到程序,需要自己安装. 1.1 下载 从官方网站ftp://ftp.vim.org/pub/vim/unix/中选择一个版本下载,我这里使用的是vim-7. ...

  9. Android 自定义圆形旋转进度条,仿微博头像加载效果

    微博 App 的用户头像有一个圆形旋转进度条的加载效果,看上去效果非常不错,如图所示: 据说 Instagram 也采用了这种效果.最近抽空研究了一下,最后实现的效果是这样: 基本上能模拟出个大概,代 ...

  10. TreeMap源码学习

    这是看过的第一个jdk源码(从立下目标以来):TreeMap.说实话断断续续的看了有好几天了,我觉得我犯了一个错误,就像一开始说的那样,我打算完完全全看懂TreeMap关于红黑树的实现方式,后来我想了 ...