poj 2096

题目:http://poj.org/problem?id=2096

f[ i ][ j ] 表示收集了 i 个 n 的那个、 j 个 s 的那个的期望步数。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int N=;
db n,s,f[N][N];
int main()
{
scanf("%lf%lf",&n,&s);db ml=n*s;
for(int i=n;i>=;i--)
for(int j=s;j>=;j--)
{
if(i==n&&j==s)continue;
if(i<n)f[i][j]+=(n-i)*j/ml*f[i+][j];
if(j<s)f[i][j]+=i*(s-j)/ml*f[i][j+];
if(i<n&&j<s)f[i][j]+=(n-i)*(s-j)/ml*f[i+][j+];
f[i][j]+=;
f[i][j]*=ml/(ml-i*j);
}
printf("%.4f\n",f[][]);
return ;
}

ZOJ 3329

题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754

高斯消元好像时间复杂度太高。

注意到每个位置都可以从 dp[ 0 ] 转移过来,所以可以想到每个 dp[ i ] 都可以表示成 a[ i ]*dp[ 0 ] + b[ i ] 的形式;这样如果算出了 a[ 0 ] 和 b[ 0 ] ,就能直接算出 dp[ 0 ] 了。

\( dp[i]=a[i]*dp[0]+b[i] \)

\( dp[i]=\sum\limits_{j=1}^{k}dp[i+j]*p[j] + dp[0]*p[0] + 1 \)

\( dp[i]=\sum\limits_{j=1}^{k}(a[i+j]*p[j]*dp[0]+b[i+j]*p[j]) + dp[0]*p[0] + 1 \)

\( dp[i]=((\sum\limits_{j=1}^{k}a[i+j]*p[j])+p[0])dp[0]+(\sum\limits_{j=1}^{k}b[i][j]*p[j])+1 \)

所以 \( a[i]=(\sum\limits_{j=1}^{k}a[i+j]*p[j])+p[0] \) , \( b[i]=(\sum\limits_{j=1}^{k}b[i][j]*p[j])+1 \)

注意多组数据的清零。空间不是 505 而是 525 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=,M=;
int n,c[],t[]; db p[M],a[N],b[N];
int main()
{
int T=rdn();
while(T--)
{
n=rdn();for(int i=;i<=;i++)c[i]=rdn();
for(int i=;i<=;i++)t[i]=rdn();
db tp=1.0/(c[]*c[]*c[]); p[]=tp;
int lm=c[]+c[]+c[];
for(int i=;i<=lm;i++)p[i]=;//
for(int i=;i<=c[];i++)
for(int j=;j<=c[];j++)
for(int k=;k<=c[];k++)
{
if(i==t[]&&j==t[]&&k==t[])continue;
p[i+j+k]+=tp;
}
for(int i=;i<=n;i++)a[i]=p[],b[i]=;
for(int i=n+,j=n+lm;i<=j;i++)a[i]=b[i]=;////
for(int i=n;i>=;i--)
for(int j=;j<=lm;j++)
a[i]+=a[i+j]*p[j],b[i]+=b[i+j]*p[j];
printf("%.10f\n",b[]/(-a[]));
}
return ;
}

hdu 4035

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4035

设 f[ i ] 表示现在在 i 号点,期望走几步离开迷宫。

数据范围无法高斯消元。

考虑把 f[ i ] 表示成 a[ i ] * f[ 1 ] + b[ i ] 的形式,这样才能在知道系数之后算出 f[ 1 ] 。它是从 1 号点开始走的,所以应该能表示成这样。

只是这样的话,转移还是没有顺序的。所以考虑把 f[ i ] 表示成 a[ i ] * f[ 1 ] + b[ i ] * f[ fa ] + c[ i ] 的形式。

\( f[i] = k[i]*f[1]+e[i]*0 + \frac{1-k[i]-e[i]}{d[i]}(f[fa]+1) + \frac{1-k[i]-e[i]}{d[i]}\sum\limits_{j \in child}(f[j]+1) \)

\( f[i] = a[i]*f[1]+b[i]*f[fa]+c[i] \)   令 \( s[i]=\frac{1-k[i]-e[i]}{d[i]} \)

\( f[i]=k[i]*f[1]+s[i]*f[fa]+s[i]+(d[i]-1])s[i]+s[i]\sum\limits_{j \in child}(a[j]*f[1]+b[j]*f[i]+c[j]) \)

\( f[i]=k[i]*f[1]+s[i]*f[fa]+d[i]*s[i]+s[i]\sum\limits_{j \in child}a[j]*f[1]+s[i]\sum\limits_{j \in child}b[j]*f[i]+s[i]\sum\limits_{j \in child}c[j] \)

\( (1-s[i]\sum\limits_{j \in child}f[i]=(k[i]+s[i]\sum\limits_{j \in child}a[j])f[1]+s[i]*f[fa]+d[i]*s[i]+s[i]\sum\limits_{j \in child}c[j] \)

答案就是 \( \frac{c[1]}{1-a[1]} \) 。当 \( 1 = a[1] \) 时无解。

精度开成 1e-8 会 WA , 1e-9 就可以了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=1e4+;const db eps=1e-;
int n,hd[N],xnt,to[N<<],nxt[N<<],d[N];db k[N],e[N],s[N],a[N],b[N],c[N];
void add(int x,int y){to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;d[x]++;}
void dfs(int cr,int fa)
{
db tp=;
for(int i=hd[cr],v;i;i=nxt[i])
if((v=to[i])!=fa)
{
dfs(v,cr);a[cr]+=a[v];c[cr]+=c[v];tp+=b[v];
}
a[cr]=a[cr]*s[cr]+k[cr]; b[cr]=s[cr]; c[cr]=c[cr]*s[cr]+d[cr]*s[cr];
tp=-tp*s[cr];
a[cr]/=tp; b[cr]/=tp; c[cr]/=tp;
}
int main()
{
int T=rdn();
for(int t=;t<=T;t++)
{
n=rdn();memset(hd,,sizeof hd);xnt=;
for(int i=;i<=n;i++)d[i]=;
for(int i=,u,v;i<n;i++)
u=rdn(),v=rdn(),add(u,v),add(v,u);
for(int i=;i<=n;i++)
{
k[i]=(db)rdn()/;e[i]=(db)rdn()/;
s[i]=(-k[i]-e[i])/d[i];
a[i]=b[i]=c[i]=;
}
dfs(,); printf("Case %d: ",t);
if(fabs(-a[])<=eps)puts("impossible");
else printf("%.10f\n",c[]/(-a[]));
}
return ;
}

poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP的更多相关文章

  1. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  2. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  3. POJ 2096 Collecting Bugs

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1716   Accepted: 783 C ...

  4. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  5. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  6. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  7. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  8. POJ 2096 Collecting Bugs:期望dp

    题目链接:http://poj.org/problem?id=2096 题意: 有一个程序猿,他每天都会发现一个bug. bug共有n个种类.属于某一个种类的概率为1/n. 有s个子系统,每个bug属 ...

  9. poj 2096 Collecting Bugs - 概率与期望 - 动态规划

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

随机推荐

  1. OAF开发中一些LOV相关技巧 (转)

    原文地址:OAF开发中一些LOV相关技巧 在OAF开发中,LOV的使用频率是很高的,它由两部分构成一是页面上的LOV输入框(如OAMESSageLovInputBean),二是弹出的LOV模式窗口(O ...

  2. SpringBoot 之Spring Boot Starter依赖包及作用

    Spring Boot 之Spring Boot Starter依赖包及作用 spring-boot-starter 这是Spring Boot的核心启动器,包含了自动配置.日志和YAML. spri ...

  3. ShardedJedis的分片原理

    ShardedJedisPool xml配置: <bean id="shardedJedisPool" class="redis.clients.jedis.Sha ...

  4. 上传xslx文件设置accept的MIME 类型

    .dotx:application/vnd.openxmlformats-officedocument.wordprocessingml.template.docx:application/vnd.o ...

  5. 超详细:Python(wordcloud+jieba)生成中文词云图

    # coding: utf-8 import jieba from scipy.misc import imread # 这是一个处理图像的函数 from wordcloud import WordC ...

  6. java反编译工具eclipse插件jad的使用

    https://www.cnblogs.com/zhikou/p/8098137.html 这边文章主要介绍如何使用Eclipse的插件jad进行反编译,在查看一些jar包里面的class文件时,就可 ...

  7. PHP:第一章——PHP中十进制、二进制、八进制、十六进制转换

    //十进制.二进制.八进制.十六进制转换 //十进制转换为二进制decbin()函数: //echo decbin(5);//输出:101 //十进制转换为八进制decoct()函数 //echo d ...

  8. httpclient cookie使用介绍

    COOKIE的处理 session的保持是通过cookie来维持的,所以如果用户有勾选X天免登陆,这个session就X天内一直有效,就是通过这个cookie来维持. 如果没有选中x天免登陆,基本上就 ...

  9. delphi中使用MSWINSCK.OCX控件

    1.首先是把winsck控件导入到delphi中,就是导入一个ActiveX控件,步骤略过. 2.将导入的winsck控件拖入你的Form中. 3.对winsck进行基本设置(IP,Port). 4. ...

  10. <NET CLR via c# 第4版>笔记 第16章 数组

    //创建一个一维数组 int[] myIntegers; //声明一个数组引用 myIntegers = new int[100]; //创建含有100个int的数组 //创建一个二维数组 doubl ...