matplolib.org可查到更多画图方法等

散点图

import matplotlib.pyplot as plt
import numpy as np #n个点
n = 1024
#平均值是0,方差是1
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
#确定颜色
T = np.arctan2(Y,X) plt.scatter(X,Y,s=75,c=T,alpha=0.5)
#plt.scatter(np.arange(5),np.arange(5)) plt.xlim(-1.5,1.5)
plt.ylim(-1.5,1.5) #隐藏所有的ticks
plt.xticks(())
plt.yticks(()) plt.show()

 

柱状图:

import matplotlib.pyplot as plt
import numpy as np #12个柱状图
n=12
X = np.arange(n)#x会生成0到11
Y1 = (1-X/float(n))*np.random.uniform(0.5, 1.0, n)#随机随机生成0.5到1的数
Y2 = (1-X/float(n))*np.random.uniform(0.5, 1.0, n) plt.bar(X,+Y1,facecolor='#9999ff',edgecolor='white')
plt.bar(X,-Y2,facecolor='#ff9999',edgecolor='white') #zip是把X,Y1中的值分别给x和y
#plt.text(x位置,y位置,值)
for x,y in zip(X,Y1):
#ha:horizontal alignment对齐方式
plt.text(x,y+0.05,'%.2f' % y,ha='center',va='bottom') for x,y in zip(X,Y2):
#ha:horizontal alignment对齐方式
plt.text(x,-y-0.05,'-%.2f' % y,ha='center',va='top') plt.xlim(-.5,n)
plt.xticks(())
plt.ylim(-1.25,1.25)
plt.yticks(())
plt.show()

 

等高线

import matplotlib.pyplot as plt
import numpy as np #通过x,y计算高度
def f(x,y):
return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2) n=256
x=np.linspace(-3,3,n)
y=np.linspace(-3,3,n) #把x,y绑定成网格的输入值
X,Y = np.meshgrid(x,y) # use plt.contourf to filling contours
#X,Y and value for (X,Y) point
#contour为网格
#8代表分成10部分
#0分成2部分
#plt.cm.cool为冷色调,plt.cm.hot为暖色调,plt.cm.Spectral,plt.cm.hsv,plt.cm.ocean
plt.contourf(X,Y,f(X,Y),8,alpha=0.75,cmap=plt.cm.hsv)#画上颜色 #use plt.contour to add contounlines
#画线,contour为等高线的线
C = plt.contour(X,Y,f(X,Y),8,colors='black',linwidth=.5) #adding label
plt.clabel(C,inline=True,fontsize=10) plt.xticks(())
plt.yticks(())
plt.show()

 

图像

import matplotlib.pyplot as plt
import numpy as np #image data
a = np.array([4.11360827978,3.365348418405,2.423766120134,
3.365248418405,2.39599930621,1.525083754405,
2.423733120134,1.525083754405,0.651536351379]).reshape(3,3) plt.imshow(a,interpolation='nearest',cmap='bone',origin='upper')
plt.colorbar(shrink=0.9)#shrink压缩,0.9压缩90% plt.xticks(())
plt.yticks(())
plt.show()

本知识学于 莫烦python

python 可视化 散点图。柱状图、等高线的更多相关文章

  1. Python数据可视化——散点图

    PS: 翻了翻草稿箱. 发现竟然存了一篇去年2月的文章...尽管naive.还是发出来吧... 本文记录了python中的数据可视化--散点图scatter, 令x作为数据(50个点,每一个30维), ...

  2. Python可视化库-Matplotlib使用总结

    在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...

  3. 【python可视化系列】python数据可视化利器--pyecharts

    学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...

  4. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

  5. 数据分析之---Python可视化工具

    1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...

  6. 这才是你想要的 Python 可视化神器

    Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法. 受 Seaborn 和 ggplot2 的启发,它专门 ...

  7. python可视化pyecharts

    python可视化pyecharts 简单介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化 ...

  8. 【转】Python 可视化神器-Plotly Express

    转自:https://mp.weixin.qq.com/s/FNpNJSMK5Vs8pwi0PbbBzw 说明:图片无法直接复制,请查看原文 导读:Plotly Express 是一个新的高级 Pyt ...

  9. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

随机推荐

  1. 《Python》 函数进阶和名称空间作用域

    函数进阶: 一.动态参数:*args  **kwargs *args是元祖形式,接收除去键值对以外的所有参数 # args可以换成任意变量名,约定俗成用args **kwargs接收的只是键值对的参数 ...

  2. IO文件相关操作

    IO编程 IO 即Input/Output  input stream 就是数据从外面(磁盘.网络)流进内存,output stream 就是数据从内存流到外面去. 通常cpu 和 内存的速度远远高于 ...

  3. Syntax error on token(s), misplaced construct(s)

    Syntax error on token(s), misplaced construct(s)

  4. 未能加载文件或程序集“Microsoft.Office.Interop.Excel

    解决方法:未能加载文件或程序集“Microsoft.Office.Interop.Excel...”   2010-07-25 08:06:15   来源:源码之家 站长整理    [大 中 小]   ...

  5. 福大软工1816 - 第八次作业(课堂实战)- 项目UML设计

    团队 学号 姓名 本次作业博客链接 031602428 苏路明(组长) https://www.cnblogs.com/Sulumer/p/9822854.html 031602401 陈瀚霖 htt ...

  6. IntelliJ IDEA使用(二):tomcat和jetty配置(转自:http://www.cnblogs.com/jenkinschan/p/6052948.html)

    上一讲用idea创建了maven web项目,接下来我们把项目发布到tomcat和jetty运行,以便进一步地开发和调试 配置tomcat 第一.打开菜单栏 第二.点击设置按钮,添加应用服务器,选择t ...

  7. file.replace

    一.简介 salt file.replace 文件内容处理函数,类似于ansible的lineinfile模块 二.参数介绍 name 被编辑文件的绝对路径,支持软链接 pattern 常规表达式,使 ...

  8. Android shell command execute Demo

    package com.android.utils; import java.io.File; import java.io.IOException; import java.io.InputStre ...

  9. TensorBoard 实践 1

    从新查看图的时候,删除旧的logs/下面的文件 tf.scalar_summary('loss',self.loss) AttributeError: 'module' object has no a ...

  10. .NET 中什么样的类是可使用 await 异步等待的?

    我们已经知道 Task 是可等待的,但是去看看 Task 类的实现,几乎找不到哪个基类.接口或者方法属性能够告诉我们与 await 相关. 而本文将探索什么样的类是可使用 await 异步等待的? D ...