1. 训练、验证、测试集

对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分:

  • 训练集(train set):用训练集对算法或模型进行训练过程;
  • 验证集(development set):利用验证集或者又称为简单交叉验证集(hold-out cross validation set)进行交叉验证,选择出最好的模型;
  • 测试集(test set):最后利用测试集对模型进行测试,获取模型运行的无偏估计。

小数据时代

在小数据量的时代,如:100、1000、10000的数据量大小,可以将data做以下划分:

无验证集的情况:70% / 30%;
有验证集的情况:60% / 20% / 20%;
通常在小数据量时代,以上比例的划分是非常合理的。

大数据时代

但是在如今的大数据时代,对于一个问题,我们拥有的data的数量可能是百万级别的,所以验证集和测试集所占的比重会趋向于变得更小。

验证集的目的是为了验证不同的算法哪种更加有效,所以验证集只要足够大能够验证大约2-10种算法哪种更好就足够了,不需要使用20%的数据作为验证集。如百万数据中抽取1万的数据作为验证集就可以了。

测试集的主要目的是评估模型的效果,如在单个分类器中,往往在百万级别的数据中,我们选择其中1000条数据足以评估单个模型的效果。

  • 100万数据量:98% / 1% / 1%;
  • 超百万数据量:99.5% / 0.25% / 0.25%(或者99.5% / 0.4% / 0.1%)

Notation

建议验证集要和训练集来自于同一个分布,可以使得机器学习算法变得更快;

如果不需要用无偏估计来评估模型的性能,则可以不需要测试集。

2. 偏差、方差

对于下图中两个类别分类边界的分割:

从图中我们可以看出,在欠拟合(underfitting)的情况下,出现高偏差(high bias)的情况;在过拟合(overfitting)的情况下,出现高方差(high variance)的情况。

在bias-variance tradeoff 的角度来讲,我们利用训练集对模型进行训练就是为了使得模型在train集上使 bias 最小化,避免出现underfitting的情况;

但是如果模型设置的太复杂,虽然在train集上 bias 的值非常小,模型甚至可以将所有的数据点正确分类,但是当将训练好的模型应用在dev 集上的时候,却出现了较高的错误率。这是因为模型设置的太复杂则没有排除一些train集数据中的噪声,使得模型出现overfitting的情况,在dev 集上出现高 variance 的现象。

所以对于bias和variance的权衡问题,对于模型来说是一个十分重要的问题。

例子:

几种不同的情况:

以上为在人眼判别误差在0%的情况下,该最优误差通常也称为“贝叶斯误差”,如果“贝叶斯误差”大约为15%,那么图中第二种情况就是一种比较好的情况。

High bias and high variance的情况

上图中第三种bias和variance的情况出现的可能如下:

没有找到边界线,但却在部分数据点上出现了过拟合,则会导致这种高偏差和高方差的情况。

虽然在这里二维的情况下可能看起来较为奇怪,出现的可能性比较低;但是在高维的情况下,出现这种情况就成为可能。

3. 机器学习的基本方法

在训练机器学习模型的过程中,解决High bias 和High variance 的过程:

  • 1.是否存在High bias ?
    增加网络结构,如增加隐藏层数目;
    训练更长时间;
    寻找合适的网络架构,使用更大的NN结构;
  • 2.是否存在High variance?
    获取更多的数据;
    正则化( regularization);
    寻找合适的网络结构;
    在大数据时代,深度学习对监督式学习大有裨益,使得我们不用像以前一样太过关注如何平衡偏差和方差的权衡问题,通过以上方法可以使得再不增加另一方的情况下减少一方的值。

4. 正则化(regularization)

利用正则化来解决High variance 的问题,正则化是在 Cost function 中加入一项正则化项,惩罚模型的复杂度。

Logistic regression


5. 为什么正则化可以减小过拟合


加入正则化项,直观上理解,正则化因子λ设置的足够大的情况下,为了使代价函数最小化,权重矩阵W就会被设置为接近于0的值。则相当于消除了很多神经元的影响,那么图中的大的神经网络就会变成一个较小的网络。

当然上面这种解释是一种直观上的理解,但是实际上隐藏层的神经元依然存在,但是他们的影响变小了,便不会导致过拟合。

数学解释

训练/验证/测试集设置;偏差/方差;high bias/variance;正则化;为什么正则化可以减小过拟合的更多相关文章

  1. 【笔记】偏差方差权衡 Bias Variance Trade off

    偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...

  2. 偏差和方差以及偏差方差权衡(Bias Variance Trade off)

    当我们在机器学习领域进行模型训练时,出现的误差是如何分类的? 我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance): 这是一张常见的靶心图 可以看左下角的这一张图,如果我们的目标是 ...

  3. 机器学习入门06 - 训练集和测试集 (Training and Test Sets)

    原文链接:https://developers.google.com/machine-learning/crash-course/training-and-test-sets 测试集是用于评估根据训练 ...

  4. TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集

    TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集 前提是TensorFlow环境以及相关的依赖环境已经安装,可以正常运行. 一.下载FaceNet源代码工程 git clone ...

  5. 随机切分csv训练集和测试集

    使用numpy切分训练集和测试集 觉得有用的话,欢迎一起讨论相互学习~Follow Me 序言 在机器学习的任务中,时常需要将一个完整的数据集切分为训练集和测试集.此处我们使用numpy完成这个任务. ...

  6. sklearn学习3----模型选择和评估(1)训练集和测试集的切分

    来自链接:https://blog.csdn.net/zahuopuboss/article/details/54948181 1.sklearn.model_selection.train_test ...

  7. sklearn——train_test_split 随机划分训练集和测试集

    sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http: ...

  8. Sklearn-train_test_split随机划分训练集和测试集

    klearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http://scikit-learn.org/stable/modules/gener ...

  9. sklearn获得某个参数的不同取值在训练集和测试集上的表现的曲线刻画

    from sklearn.svm import SVC from sklearn.datasets import make_classification import numpy as np X,y ...

随机推荐

  1. vue笔记 - 组件间通信 之 中央事件总线bus

    中央事件总线 - 就是一个名字可以叫做bus的vue空实例,里边没有任何内容: var bus = new Vue(); 人如其名,她就像一个公交车一样,来回输送人,将a站点的A输送到b站点,再将b站 ...

  2. Windows Server 2012升级R2过程中意外关闭恢复原系统方法

    2012升级R2过程中强制关闭了计算机,导致再次启动后蓝屏提示"BAD_SYSTEM_CONFIG_INFO".用2012安装盘进入尝试修复失败(安全模式什么的都不用想),进入命令 ...

  3. Web Service Client使用Microsoft WSE 2.0

    我安装了WSE 2.0 SP3,Setup Type选择Runtime.如果想要让Visual Studio 2005以上版本集成WSE需稍费周折,默认集成Visual Studio 2005. 1. ...

  4. pycharm的版本问题

    1.分类: 专业版是收费的 Professional 教育版是免费 edu https://www.jetbrains.com/pycharm-edu/whatsnew/ 社区版是免费的 Free C ...

  5. 【题目】求n以内的素数个数

    最近在leetCode上刷提,还是满锻炼人的,为以后面试打基础吧.不多说下面开始. 问题:求[2,n]之间的素数的个数. 来源:leetCode OJ 提示: Let's start with a i ...

  6. [工具] CuteMarkEd

    CuteMarkEd 是一款开源免费的.支持代码高亮的.朴素的 Markdown 本地编辑器,支持 Windows.Linux. 就因为程序员喜欢用,然后就拼命的开发 Markdown 编辑器么?青小 ...

  7. Unity3D NGUI 二 NGUI Button怎样接受用户点击并调用函数,具体方法名称是什么

    a.直接监听事件 把下面脚本直接绑定在按钮上,当按钮点击时就可以监听到,这种方法不太好很不灵活. void OnClick(){ Debug.Log("Button is Click!!!& ...

  8. thinkphp----替换写标签的方法

    在用thinkphp写cmf的时候,考虑到一些方法的复用,所以考虑使用写标签. 写标签的好处在于:通用,而且比较容易看,但是封装一个标签,个人觉得还是比较麻烦,想了想 thinkcmf 调用文章的方式 ...

  9. Python 核心编程

    第3章 Python 基础 1.语句和语法: 注释(#): 继续换句话说跨行(\):有两种例外情况一个语句不使用反斜线也可以跨行.在使用闭合操作符时,单一语句可以跨多行,如小括号.中括号,花括号等,另 ...

  10. SequenceFile实例操作

    HDFS API提供了一种二进制文件支持,直接将<key,value>对序列化到文件中,该文件格式是不能直接查看的,可以通过hadoop  dfs -text命令查看,后面跟上Sequen ...