hadoop old API CombineFileInputFormat
来自:http://f.dataguru.cn/thread-271645-1-1.html
简介
本文主要介绍下面4个方面
1.为什么要使用CombineFileInputFormat
2.CombineFileInputFormat实现原理
3.怎样使用CombineFileInputFormat
4.现存的问题
使用CombineFileInputFormat的目的
在开发MR的程序时,mapper的主要作用是对数据的收集。一般情况下,为了能让mapper更快的运行,我们会对文件进行split,以便多个mapper同时运行。在这种情况下,为了让程序更好更快的运行,我们需要控制mapper的个数。Mapper的个数主要由文件的大小及我们所设置的mapred.min.split.size以及blockSize所决定(详细参考:http://ai-longyu.iteye.com/blog/1566633)
上面所说的在我们使用TextInputFormat和分析单个文件时是没有问题的,基本上mapper的个数能够控制在我们所预期的范围内。但是当我们使用多个文件作为input的时候,mapper的个数就不再是我们所期望的那样了,因为TextInputFormat继承的是FileInputFormat,而FileInputFormat的split操作是只针对单个文件,对于多个文件,是将每个文件进行split,而不能做一些合并的操作(尤其是大量的小文件)。
你会想为什么不能进行合并呢,有没有实现合并的split呢?在这个时候,CombineFileInputFormat就闪亮登场了。这里所说的CombineFileInputFormat是由官方提供的,只要我们搞清楚了官方是怎么实现的,就能够自己也实现一个了。接下来将逐步分析CombineFileInputFormat的实现了。
CombineFileInputFormat实现步骤
这里插一句,官方的CombineFileInputFormat并不是线程安全的。
先申明一下,这里分析所采用的源码是apache的1.0.3,分析的在org.apache.hadoop.mapred.lib.CombineFileInputFormat而不是org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat,这里分析的旧API,而没有分析新的API
生成split的信息是由
- public InputSplit[] getSplits(JobConf job, int numSplits)
Job参数:job的配置信息
numSplits参数:期望的mapper数目,在这里根本就没有使用
- //每个DN的最小split大小
- long minSizeNode = 0;
- //同机架的最小split大小
- long minSizeRack = 0;
- //最大的split大小
- long maxSize = 0;
这几个变量都可以从job的配置信息中获取
接下来就是获取input的路径列表,判断每个路径时候被Filter所允许,然后对允许的路径列表生成split信息列表,进入该类的核心方法
- /**
- * Return all the splits in the specified set of paths
- *
- * @param job Job的配置信息
- * @param paths 输入源的路径列表
- * @param maxSize 最大的split大小
- * @param minSizeNode 每个DN最小的split大小
- * @param minSizeRack 每个rack最小的split大小
- * @param splits split信息列表
- * @throws IOException
- */
- private void getMoreSplits(JobConf job, Path[] paths,
- long maxSize, long minSizeNode, long minSizeRack,
- List<CombineFileSplit> splits)
生成每个文件的OneFileInfo对象
- // populate all the blocks for all files
- long totLength = 0;
- for (int i = 0; i < paths.length; i++) {
- //构建每个input文件的信息,并将文件中的每个
- //block信息收集到rackToBlocks、blockToNodes、nodeToBlocks中
- files = new OneFileInfo(paths, job,
- rackToBlocks, blockToNodes, nodeToBlocks);
- //增加所有文件的大小
- totLength += files.getLength();
- }
在下面就开始真正的生成Split信息了
第一次:将同DN上的所有block生成Split,生成方式:
1.循环nodeToBlocks,获得每个DN上有哪些block
2.循环这些block列表
3.将block从blockToNodes中移除,避免同一个block被包含在多个split中
4.将该block添加到一个有效block的列表中,这个列表主要是保留哪些block已经从blockToNodes中被移除了,方便后面恢复到blockToNodes中
5.向临时变量curSplitSize增加block的大小
6.判断curSplitSize是否已经超过了设置的maxSize
a) 如果超过,执行并添加split信息,并重置curSplitSize和validBlocks
b) 没有超过,继续循环block列表,跳到第2步
7.当前DN上的block列表循环完成,判断剩余的block是否允许被split(剩下的block大小之和是否大于每个DN的最小split大小)
a) 如果允许,执行并添加split信息
b) 如果不被允许,将这些剩余的block归还blockToNodes
8.重置
9.跳到步骤1
- // process all nodes and create splits that are local
- // to a node.
- //创建同一个DN上的split
- for (Iterator<Map.Entry<String,
- List<OneBlockInfo>>> iter = nodeToBlocks.entrySet().iterator();
- iter.hasNext() {
- Map.Entry<String, List<OneBlockInfo>> one = iter.next();
- nodes.add(one.getKey());
- List<OneBlockInfo> blocksInNode = one.getValue();
- // for each block, copy it into validBlocks. Delete it from
- // blockToNodes so that the same block does not appear in
- // two different splits.
- for (OneBlockInfo oneblock : blocksInNode) {
- if (blockToNodes.containsKey(oneblock)) {
- validBlocks.add(oneblock);
- blockToNodes.remove(oneblock);
- curSplitSize += oneblock.length;
- // if the accumulated split size exceeds the maximum, then
- // create this split.
- if (maxSize != 0 && curSplitSize >= maxSize) {
- // create an input split and add it to the splits array
- //创建这些block合并后的split,并将其split添加到split列表中
- addCreatedSplit(job, splits, nodes, validBlocks);
- //重置
- curSplitSize = 0;
- validBlocks.clear();
- }
- }
- }
- // if there were any blocks left over and their combined size is
- // larger than minSplitNode, then combine them into one split.
- // Otherwise add them back to the unprocessed pool. It is likely
- // that they will be combined with other blocks from the same rack later on.
- //其实这里的注释已经说的很清楚,我再按照我的理解说一下
- /**
- * 这里有几种情况:
- * 1、在这个DN上还有没有被split的block,
- * 而且这些block的大小大于了在一个DN上的split最小值(没有达到最大值),
- * 将把这些block合并成一个split
- * 2、剩余的block的大小还是没有达到,将剩余的这些block
- * 归还给blockToNodes,等以后统一处理
- */
- if (minSizeNode != 0 && curSplitSize >= minSizeNode) {
- // create an input split and add it to the splits array
- addCreatedSplit(job, splits, nodes, validBlocks);
- } else {
- for (OneBlockInfo oneblock : validBlocks) {
- blockToNodes.put(oneblock, oneblock.hosts);
- }
- }
- validBlocks.clear();
- nodes.clear();
- curSplitSize = 0;
- }
第二次:对不再同一个DN上但是在同一个Rack上的block进行合并(只是之前还剩下的block)
- // if blocks in a rack are below the specified minimum size, then keep them
- // in 'overflow'. After the processing of all racks is complete, these overflow
- // blocks will be combined into splits.
- ArrayList<OneBlockInfo> overflowBlocks = new ArrayList<OneBlockInfo>();
- ArrayList<String> racks = new ArrayList<String>();
- // Process all racks over and over again until there is no more work to do.
- //这里处理的就不再是同一个DN上的block
- //同一个DN上的已经被处理过了(上面的代码),这里是一些
- //还没有被处理的block
- while (blockToNodes.size() > 0) {
- // Create one split for this rack before moving over to the next rack.
- // Come back to this rack after creating a single split for each of the
- // remaining racks.
- // Process one rack location at a time, Combine all possible blocks that
- // reside on this rack as one split. (constrained by minimum and maximum
- // split size).
- // iterate over all racks
- //创建同机架的split
- for (Iterator<Map.Entry<String, List<OneBlockInfo>>> iter =
- rackToBlocks.entrySet().iterator(); iter.hasNext() {
- Map.Entry<String, List<OneBlockInfo>> one = iter.next();
- racks.add(one.getKey());
- List<OneBlockInfo> blocks = one.getValue();
- // for each block, copy it into validBlocks. Delete it from
- // blockToNodes so that the same block does not appear in
- // two different splits.
- boolean createdSplit = false;
- for (OneBlockInfo oneblock : blocks) {
- //这里很重要,现在的blockToNodes说明的是还有哪些block没有被split
- if (blockToNodes.containsKey(oneblock)) {
- validBlocks.add(oneblock);
- blockToNodes.remove(oneblock);
- curSplitSize += oneblock.length;
- // if the accumulated split size exceeds the maximum, then
- // create this split.
- if (maxSize != 0 && curSplitSize >= maxSize) {
- // create an input split and add it to the splits array
- addCreatedSplit(job, splits, getHosts(racks), validBlocks);
- createdSplit = true;
- break;
- }
- }
- }
- // if we created a split, then just go to the next rack
- if (createdSplit) {
- curSplitSize = 0;
- validBlocks.clear();
- racks.clear();
- continue;
- }
- //还有没有被split的block
- //如果这些block的大小大于了同机架的最小split,
- //则创建split
- //否则,将这些block留到后面处理
- if (!validBlocks.isEmpty()) {
- if (minSizeRack != 0 && curSplitSize >= minSizeRack) {
- // if there is a mimimum size specified, then create a single split
- // otherwise, store these blocks into overflow data structure
- addCreatedSplit(job, splits, getHosts(racks), validBlocks);
- } else {
- // There were a few blocks in this rack that remained to be processed.
- // Keep them in 'overflow' block list. These will be combined later.
- overflowBlocks.addAll(validBlocks);
- }
- }
- curSplitSize = 0;
- validBlocks.clear();
- racks.clear();
- }
- }
最后,对于既不在同DN也不在同rack的block进行合并(经过前两步还剩下的block),这里源码就没有什么了,就不再贴了
源码总结:
合并,经过了3个步骤。同DN----》同rack不同DN-----》不同rack
将可以合并的block写到同一个split中
使用自定义的CombineFileInputFormat
MultiFileCombineInputFormat
- package org.rollinkin.hadoop;
- import java.io.IOException;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.InputSplit;
- import org.apache.hadoop.mapred.JobConf;
- import org.apache.hadoop.mapred.RecordReader;
- import org.apache.hadoop.mapred.Reporter;
- import org.apache.hadoop.mapred.lib.CombineFileInputFormat;
- import org.apache.hadoop.mapred.lib.CombineFileRecordReader;
- import org.apache.hadoop.mapred.lib.CombineFileSplit;
- /**
- * 多文件合并split的输入format
- *
- * @author rollinkin
- * @date 2012-10-29
- * @version 1.0
- * @since 1.0
- */
- public class MultiFileCombineInputFormat extends
- CombineFileInputFormat<LongWritable, Text> {
- @Override
- public RecordReader<LongWritable, Text> getRecordReader(
- InputSplit split, JobConf job, Reporter reporter)
- throws IOException {
- @SuppressWarnings({ "rawtypes", "unchecked" })
- Class<RecordReader<LongWritable, Text>> rrClass = (Class)CombineLineRecordReader.class;
- return new CombineFileRecordReader<LongWritable, Text>(job,(CombineFileSplit) split, reporter,rrClass);
- }
- }
CombineLineRecordReader,这个其实没有什么内容,就是包装了一个Reader
- package org.rollinkin.hadoop;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.FileSplit;
- import org.apache.hadoop.mapred.LineRecordReader;
- import org.apache.hadoop.mapred.RecordReader;
- import org.apache.hadoop.mapred.Reporter;
- import org.apache.hadoop.mapred.lib.CombineFileSplit;
- public class CombineLineRecordReader implements
- RecordReader<LongWritable, Text> {
- private LineRecordReader delegate;
- public CombineLineRecordReader(CombineFileSplit split, Configuration conf,
- Reporter reporter, Integer idx) throws IOException {
- FileSplit fileSplit = new FileSplit(split.getPath(idx),
- split.getOffset(idx), split.getLength(idx),
- split.getLocations());
- delegate = new LineRecordReader(conf, fileSplit);
- }
- @Override
- public boolean next(LongWritable key, Text value) throws IOException {
- return delegate.next(key, value);
- }
- @Override
- public LongWritable createKey() {
- return delegate.createKey();
- }
- @Override
- public Text createValue() {
- return delegate.createValue();
- }
- @Override
- public long getPos() throws IOException {
- return delegate.getPos();
- }
- @Override
- public void close() throws IOException {
- delegate.close();
- }
- @Override
- public float getProgress() throws IOException {
- return delegate.getProgress();
- }
- }
具体的使用我就不再留了,其实很简单,就是把你的InputFormat设置成MultiFileCombineInputFormat 就可以了(在2012-11-09之前提供了一个reader实际上是不可用,他存在跨块读取的问题,
这里就不在提供了。如果使用了,请更新一下。哎,又传播错误的消息了)
现存问题
- 合并后会造成mapper不能本地化,带来mapper的额外开销,需要权衡
- 这里只实现了简单的Text的方式的合并,对于可压缩的、二进制等文件没有提供
- 这里提供的自定义的实现,只是简单的按行读取
hadoop old API CombineFileInputFormat的更多相关文章
- hadoop的API对HDFS上的文件访问
这篇文章主要介绍了使用hadoop的API对HDFS上的文件访问,其中包括上传文件到HDFS上.从HDFS上下载文件和删除HDFS上的文件,需要的朋友可以参考下hdfs文件操作操作示例,包括上传文件到 ...
- Python3调用Hadoop的API
前言: 上一篇文章 我学习使用pandas进行简单的数据分析,但是各位...... Pandas处理.分析不了TB级别数据的大数据,于是再看看Hadoop. 另附上人心不足蛇吞象 对故事一的感悟: ...
- 通过流的方式操作hadoop的API
通过流的方式操作hadoop的API 功能: 可以直接用来操作hadoop的文件系统 可以用在mapreduce的outputformat中设置RecordWrite 参考: 概念理解 http:// ...
- hadoop: hdfs API示例
利用hdfs的api,可以实现向hdfs的文件.目录读写,利用这一套API可以设计一个简易的山寨版云盘,见下图: 为了方便操作,将常用的文件读写操作封装了一个工具类: import org.apach ...
- Hadoop Java API 操作 hdfs--1
Hadoop文件系统是一个抽象的概念,hdfs仅仅是Hadoop文件系统的其中之一. 就hdfs而言,访问该文件系统有两种方式:(1)利用hdfs自带的命令行方式,此方法类似linux下面的shell ...
- HADOOP的API简单介绍
public class HdfsClient { FileSystem fs = null; @Before public void init() throws Exception { // 构造一 ...
- 在本地调用hadoop的api
第一次在本地运行Java代码,调用hadoop的hdfs的api接口,遇到下面的问题: 1.HADOOP_HOME and hadoop.home.dir are unset 解决办法:在本地安装配置 ...
- hadoop 文件系统API操作
配置参数:-DHADOOP_USER_NAME=hadoop public class HdfsUtils { private static FileSystem fileSystem; @Befor ...
- Linux 下 Hadoop java api 问题
1. org.apache.hadoop.security.AccessControlException: Permission denied: user=opsuser, access=WRITE, ...
随机推荐
- MySQL中进行树状所有子节点的查询 . mysql根据父id 查询所有的子id
在Oracle 中我们知道有一个 Hierarchical Queries 通过CONNECT BY 我们可以方便的查了所有当前节点下的所有子节点.但很遗憾,在MySQL的目前版本中还没有对应的功能. ...
- nginx如何启用对HTTP2的支持 | nginx如何验证HTTP2是否已启用
nginx启用HTTP2特性 查看当前nginx的编译选项 1 #./nginx -V 2 3 nginx version: nginx/1.9.15 4 built by gcc 5.4.0 2 ...
- Spring Boot新模块devtools
Spring Boot 1.3中引入了一个新的模块,devtools. 顾名思义,这个模块是为开发者构建的,目的在于加快开发速度. 这个模块包含在最新释出的1.3.M1中. 自动禁用模板缓存 一般情况 ...
- 用layer-list实现弧形进度条
本文转载自:http://www.linuxidc.com/Linux/2013-04/82743.htm 之前我有写过如何用style或者是layer-list实现自定义的横向进度条(http:// ...
- [Android Pro] 终极组件化框架项目方案详解
cp from : https://blog.csdn.net/pochenpiji159/article/details/78660844 前言 本文所讲的组件化案例是基于自己开源的组件化框架项目g ...
- Reloading Java Classes 201: How do ClassLoader leaks happen? Translation
The original link : http://zeroturnaround.com/rebellabs/rjc201/ From ClassLoaders to Classes 从ClassL ...
- JVM的内存区域划分(转)
原文链接:JVM的内存区域划分 JVM的内存区域划分 学过C语言的朋友都知道C编译器在划分内存区域的时候经常将管理的区域划分为数据段和代码段,数据段包括堆.栈以及静态数据区.那么在Java语言当中,内 ...
- [PowerShell Utils] Automatically Change DNS and then Join Domain
I would like to start a series of blog posts sharing PowerShell scripts to speed up our solution ope ...
- Triangle leetcode java
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...