单例模式简介以及C++版本的实现
本篇博文主要内容参考 C++的单例模式一文,在此,为原作者耐心细致的分析讲解,表示感谢。本文将结合此篇文章,给出自己做实验后的理解以及代码,作为今天学习的小结。
单例模式,它的意图是保证一个类仅拥有一个实例,并在对外提供一个全局访问点,该实例被所有模块共享。这种模式的应用范围很广,比如系统日志输出,操作系统的窗口管理器,PC连接的键盘等等。
单例模式是一种设计模式,它的具体实现和各种语言特性有关,这里主要介绍在C++上面的实现,测试平台为Win7 64位,VS2010开发环境。
根据参考博文中的例子,在此先列举一下各种实现策略,以下均以CSingleton为类名来举例。
1. 使用一个全局对象,比如就叫CSingleton g_instance,优点是访问方便,缺点是不能保证此类对象唯一,除了全局对象外,还能够创建CSingleton的局部实例。
2. 使用类的静态成员变量,此变量为私有的静态成员指针,如static CSingleton1 *m_pInstance;此时,需要考虑让类自己在合适的时候释放掉此成员指针所指向的内容。
3. 使用类的静态成员变量,此变量为私有的静态成员,如static CSingleton1 m_pInstance;
在给出代码前,要说明几个知识点:
1. 类的静态成员(包括 成员变量和成员函数),属于类自身,所有实例对象均共享同一副本。
2. 静态成员初始化操作在进入main函数之前,就已经分配空间并且完成初始化。静态成员变量必须在类体外初始化,通过类似 CSingleton1* CSingleton::m_pInstance = NULL的方式来定义初始化数值。如果不初始化,那么此成员就不会被分配空间,也就不会在类中存在。
4. 静态成员在程序退出main函数后,会转到CRT类函数的清理中,完成程序静态变量、类的析构函数等资源释放的调用,具体细节就无需考虑,只需要知道退出main函数还需要做清理工作就行。
3. 声明在类内部的类,成为嵌套类,它一般用来声明只在类内部使用的类。如果一定要在外部使用,需要加域解析符::
好了,基本铺垫完成,开始码代码,先从简单开始。
静态类变量方式,起先可以是类的成员变量,但需要在外部进行初始化,不优雅。其实,在类的静态成员函数中声明静态局部类变量,是一种更简洁的方法。
class CSingleton
{
private:
CSingleton() //构造函数是私有的
{
}
CSingleton(const CSingleton &);
CSingleton & operator = (const CSingleton &);
public:
static CSingleton & GetInstance()
{
static CSingleton instance; //局部静态变量
return instance;
}
};
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
静态类指针方式:这种方式实现,因为有分配空间,所以需要考虑的东西比较多。参考C++的单例模式一文中的代码,下面给出经过亲身实践后,无内存泄露的代码。重要的地方,都写上了注释,便于大家理解。
// singlethon.cpp : 定义控制台应用程序的入口点。
#include <iostream>
#include <Windows.h>
using namespace std;
//用于开启CRT 内存泄露检测问题
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
//多线程保护锁类
class Lock
{
private:
CRITICAL_SECTION m_cs; // 封装临界区
Lock(){};
Lock(const Lock&){};
Lock& operator=(const Lock&){};
public:
Lock(CRITICAL_SECTION cs):m_cs(cs)
{
InitializeCriticalSection(&m_cs);
}
void StartLock()
{
EnterCriticalSection(&m_cs);
}
void StopLock()
{
// 离开临界区
//LeaveCriticalSection(&m_cs);
}
~Lock()
{
// 离开临界区 放在这里 貌似更好点
LeaveCriticalSection(&m_cs);
// 临界区不用的时候,进行销毁释放占用资源
DeleteCriticalSection(&m_cs);
}
};
//自己仿照参考,实现一个单例模式
class Singlethon
{
//内嵌类,只能在Singlethon中使用,无法直接在外部使用
class CGarbo //唯一的作用,在析构函数中,删除Singlethon的实例
{
public:
CGarbo()
{
cout << "constructor CGarbo"<<endl;
}
~CGarbo()
{
if(Singlethon::m_pInstance)
{
cout << "execute CGarbo destructor function"<<endl;
delete Singlethon::m_pInstance;
}
}
};
private:
Singlethon(){cout << "constructor Singlethon "<<endl;}; //禁止直接声明 Singlethon single;
Singlethon(const Singlethon&){}; //禁止间接声明 Singlethon single2(*(Singlethon::GetInstance()));
// 或者 Singlethon single2 = (*(Singlethon::GetInstance()));
Singlethon& operator=(const Singlethon&){}; //禁止赋值操作 Singlethon single;single = *(Singlethon::GetInstance());
static Singlethon* m_pInstance;
static CGarbo Garbo; //静态成员变量,程序结束时,系统自动调用它的析构函数
static CRITICAL_SECTION cs;
public:
static Singlethon* GetInstance();
~Singlethon()
{
cout << "execute Singlethon destructor function"<<endl;
//不能在这里释放自身,因为CGarbox的析构函数会先于自身析构执行,而它在执行时,会调用 delete Singlethon::m_pInstance;
//这会触发Singlethon自身的析构函数,而这里,再一次调用 delete Singlethon::m_pInstance,这就造成无限循环
//最终会报错堆栈溢出的错误
#if 0
if(Singlethon::m_pInstance)
delete Singlethon::m_pInstance;
Singlethon::m_pInstance = NULL;
#endif
}
};
//以下三句话,缺一不可
Singlethon::CGarbo Singlethon::Garbo;
Singlethon* Singlethon::m_pInstance = NULL;
Singlethon* Singlethon::GetInstance()
{
if (NULL == m_pInstance)
{
Lock lock(cs);
lock.StartLock();
if (NULL == m_pInstance)
{
m_pInstance = new Singlethon;
}
lock.StopLock();
} //正常退出或者异常抛出,这里都会自动调用lock的析构函数,因为lock的作用域是局部的
return m_pInstance;
}
int main()
{
//开启CRT内存泄露检测功能
_CrtSetDbgFlag ( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
Singlethon* p1 = Singlethon::GetInstance();
Singlethon* p2 = Singlethon::GetInstance();
if ( p1 == p2)
{
cout << "单例模式测试成功!!"<<endl;
}
else
{
cout << "单例模式测试失败!!"<<endl;
}
return 0;
}
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
上述代码有几个地方要详细解析一下:
1. 在释放类的时候,如果类中有动态变量成员,一般要先释放其中的内容,然后在调用析构函数释放类本身的空间。类似的,比如在vector<int*> array,如果直接array.clear,其中,分配的内存空间就会泄露,正确的方法是,先释放掉分配的内容,然后清空空间。
for (vector<void *>::iterator it = v.begin(); it != v.end(); it ++)
if (NULL != *it)
{
delete *it;
*it = NULL;
}
v.clear();
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
2. 上述代码定义了一个锁类,封装了临界区的相关操作,作为资源管理类,内部有临界区变量,作为多线程安全的保证。局部资源管理类变量使得,当异常发生时,也能调用析构函数,释放临界区资源
3. 在进行判断时,判断了两次,提高效率。因为该方法调用第一次就产生实例,而pInstance == NULL 大部分情况下都为false,如果只判断一次,那么每次获取实例前都需要加锁,效率太低。
4. 定义一个嵌套类,和对应的静态局部变量,这样,当整个单例释放之前,就可以通过它来找到单例指针,然后delete掉他,这样就不会有内存泄露发送了。
5. 使用CRT类函数的内存泄露检测功能,方便查看调试。
文章的最后,给出测试结果图:
OK!
读者可以在各个构造和析构函数中间加上端点,也可以尝试注释掉CGarbo的析构函数调试,看看有没有内存泄露。
好久没有更新文章,这段时间工作很忙,忙不可怕,可怕的是没有目的、没用动机的忙。
版权声明:本文为博主原创文章,欢迎转载,转载请注明出处,谢谢。
单例模式简介以及C++版本的实现的更多相关文章
- Linux简介与厂商版本
Linux简介与厂商版本 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 1. Linux简介 Linux可以有狭义和广义两种 ...
- Linux简介与厂商版本上
Linux简介与厂商版本 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 1. Linux简介 Linux可以有狭义和广义两种 ...
- Checkstyle 简介 以及各版本下载地址
CheckStyle是SourceForge下的一个项目,提供了一个帮助JAVA开发人员遵守某些编码规范的工具.它能够自动化代码规范检查过程,从而使得开发人员从这项重要,但是枯燥的任务中解脱出来. C ...
- HTML data属性简介以及低版本浏览器兼容算法
实例 使用 data-* 属性来嵌入自定义数据: <ul> <li data-animal-type="bird">Owl</li> <l ...
- C# 单例模式Lazy<T>实现版本
非Lazy版本的普通单例实现: public sealed class SingletonClass : ISingleton { private SingletonClass () { // the ...
- Linux简介与厂商版本下
2. Linux的厂商版本 在Linux内核基础上,我们还有许多厂商版本.即使有了内核和GNU软件,Linux的安装和编译并不是简单的工作,Linux厂商就是瞄准了这个市场.这些厂商会在Linux内核 ...
- 微信分享网页时自定义缩略图和简介(.net版本)
要实现微信分享网页时自定义缩略图和简介,需开发者在公众平台网站中创建公众号.获取接口权限后,通过微信JS-SDK的分享接口,来实现微信分享功能. 下面来说明实现步骤. 第一部分 准备步骤 步骤一:注册 ...
- MYSQL—第一部分(简介和windows版本的安装)
一.概述 1.什么是数据库 ? 答:数据的仓库,如:在自己编写的程序中我们创建了一个 db 目录,称其为数据库 2.什么是 MySQL.Oracle.SQLite.Access.MS SQLServe ...
- 基于ZigBee模块与51单片机之间的简化智能家居项目简介(学生版本)
5月份学校举行比赛,我们团队报名<智能家居>的项目,设计的总体思路用:QT写的上位机与ZigBee无线通信加51作为终端的简易版智能家居 电路连接:PC机->cc2530(协调器)- ...
随机推荐
- Eigen教程(3)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 矩阵和向量的运算 提供一些概述和细节:关于矩阵.向量以及标量的运算. 介绍 Eige ...
- [转]ORA-01555错误总结(一)
原文地址:http://blog.csdn.net/sh231708/article/details/52935695 这篇文章算是undo相关问题总结的补充,因为ORA-01555错误与undo有着 ...
- JAVA读取MongoDB中的二进制图片并在jsp中显示
http://blog.csdn.net/u012138706/article/details/52180665
- 【iCore4 双核心板_FPGA】例程三:计数器实验——计数器使用
实验现象: 绿色led闪烁 核心源代码: //--------------------module_counter_ctrl--------------------// module counter_ ...
- Python 实现多元线性回归预测
一.二元输入特征线性回归 测试数据为:ex1data2.txt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ...
- Redis基准
Redis的基准是实用程序运行n个命令检查Redis 的性能. 语法 redis的基准的基本语法如下所示: redis-benchmark [option] [option value] 例子 下面给 ...
- 移动互联网App兼容性测试
我建议大家也可以参考一些针对App监测和统计的网站,都非常有意义,具体如下: 友盟品牌手机排行榜 http://www.umeng.com/ 移动观象台 https://www.talkingd ...
- 关于Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
- Selenium常用操作汇总二——如何把一个元素拖放到另一个元素里面(转)
Q群里有时候会有人问,selenium webdriver怎么实现把一个元素拖放到另一个元素里面.这一节总一下元素的拖放. 下面这个页面是一个演示拖放元素的页面,你可以把左右页面中的条目拖放到右边的 ...
- Python模拟Linux的Crontab, 写个任务计划需求
Python模拟Linux的Crontab, 写个任务计划需求 来具体点 需求: 执行一个程序, 程序一直是运行状态, 这里假设是一个函数 当程序运行30s的时候, 需要终止程序, 可以用python ...