BZOJ 1009 :[HNOI2008]GT考试(KPM算法+dp+矩阵快速幂)
这道到是不用看题解,不过太经典了,早就被剧透一脸了
这道题很像ac自动机上的dp(其实就是)
然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了
时间复杂度为o(m^3 *log n);
蒟蒻kpm写得少,改了好久= =
CODE:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,mod;
#define maxn 30
char c[maxn];
struct martix{
int r,c;int f[maxn][maxn];
int init(int x){
r=c=x;
for (int i=1;i<=x;i++) f[i][i]=1;
}
}a,b;
martix operator * (const martix &x,const martix &y){
martix ans;
ans.r=x.r;
ans.c=y.c;
for (int i=1;i<=ans.r;i++)
for (int j=1;j<=ans.c;j++){
ans.f[i][j]=0;
for (int k=1;k<=x.c;k++)
ans.f[i][j]=((x.f[i][k]*y.f[k][j])%mod+ans.f[i][j])%mod;
}
return ans;
}
martix quick(int x,martix y){
martix ans;
ans.init(y.r);
for (;x;x>>=1){
if (x&1) ans=ans*y;
y=y*y;
}
return ans;
}
int next[maxn];
int main(){
scanf("%d%d%d",&n,&m,&mod);
scanf("%s",c+1);
int t=0;
next[1]=0;
for (int i=2;i<=m;i++) {
while (t&&c[t+1]!=c[i]) t=next[t];
next[i]=c[t+1]!=c[i]?0:++t;
}
a.r=a.c=m+1;
for (int i=1;i<=m;i++) a.f[i][i+1]=1;
a.f[1][1]=9;
for (int i=1;i<m;i++) {
int sum=1;
{
for (int j=2;j<=m+1;j++)
if (a.f[next[i]+1][j]&&c[j-1]!=c[i+1]){
a.f[i+1][j]=a.f[next[i]+1][j];sum+=a.f[i+1][j];
}
}
a.f[i+1][1]=10-sum;
}
a=quick(n,a);
b.r=1;b.c=1+m;
b.f[1][1]=1;
a=b*a;
int ans=0;
for (int i=1;i<=m;i++) (ans+=a.f[1][i])%=mod;
printf("%d",ans);
return 0;
}
BZOJ 1009 :[HNOI2008]GT考试(KPM算法+dp+矩阵快速幂)的更多相关文章
- bzoj 1009: [HNOI2008]GT考试【kmp+dp+矩阵快速幂】
看n和k的范围长得就很像矩阵乘法了 设f[i][j]表示到第i个位置的后缀最长匹配目标串的j位.转移的话显然是枚举0~9,然后选择f[i+1]中能被他转移的加起来,需要用到next数组.然后构造矩阵的 ...
- BZOJ 1009: [HNOI2008]GT考试(kmp+dp+矩阵优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 思路:真的是好题啊! 对于这种题目,很有可能就是dp,$f[i][j]$表示分析到第 ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法
标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...
- [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...
- 【BZOJ1009】GT考试(KMP算法,矩阵快速幂,动态规划)
[BZOJ1009]GT考试(KMP算法,矩阵快速幂,动态规划) 题面 BZOJ 题解 看到这个题目 化简一下题意 长度为\(n\)的,由\(0-9\)组成的字符串中 不含串\(s\)的串的数量有几个 ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...
随机推荐
- 1)Linux学习笔记:crontab命令
crond简介 crond是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程 配置文件 ``` SHELL=/bin/bash PATH=/sbin:/bin:/usr/sbin: ...
- MMA
在32位的系统上,线性地址空间可达到4GB,这4GB一般按照3:1的比例进行分配,也就是说用户进程享有前3GB线性地址空间,而内核独享最后1GB线性地址空间.由于虚拟内存的引入,每个进程都可拥有3GB ...
- Unity中使用扩展方法解决foreach导致的GC
对于List这种顺序表,我们解决的时候还是可以使用for代替foreach即可.但是对于非顺序表,比如Dictionary或者Set之类,我们可以扩展方法Foreach,ForeachKey和Fore ...
- App外包开发周期一般多长?
很多人问我,开发一个app要用多长时间.事实上开发一款app没有固定周期的,得因产品而论,你软件的功能需求决定了app外包开发的周期.但是除了app本身以外,人为因素往往对开发周期也有一定的影响.例如 ...
- 为mysql 表重新设置自增的主键id
1,删除原有主键: ALTER TABLE `table_name` DROP `id`; 2,添加新主键字段: ALTER TABLE `table_name` ADD `id` INT NOT N ...
- 13.TCP的超时与重传
TCP提供可靠的运输层.它使用的方法之一就是确认从另一端收到的数据.但数据和确认都有可能会丢失.TCP通过在发送时设置一个定时器来解决这种问题.如果当定时器溢出时还没有收到确认,它就重传该数据. 对于 ...
- Mysql死锁问题解决方式 & 聚簇索引、隔离级别等知识
参考了这篇文章:http://www.cnblogs.com/LBSer/p/5183300.html <mysql死锁问题分析> 写的不错. 如果Mysql死锁,会报出: 1.1 死锁 ...
- JMeter 连接数据库报错No suitable driver found for jdbc:xxxxxxxxx
添加JDBC Connection Configuration 和 JDBC Request 组件,添加相关信息 注意两个组件里面输入的Variable Name 必须一致 运行查看结果树出现如下错误 ...
- php中利用array_filter过滤数组为空值
[导读] 在我们开发过程中,判断数组为空时你会想到什么方法呢?首先想到的应该是empty函数,不过直接用empty函数判断为空是不对的,因为当这个值是多维数的时候,empty结果是有值的.其实我们可以 ...
- pureMVC简单示例及其原理讲解五(Facade)
本节将讲述Facade,Proxy.Mediator.Command的统一管家.自定义Facade必须继承Facade,在本示例中自定义Facade名称为ApplicationFacade,这个名称也 ...