字符串匹配的KMP算法(转)
字符串匹配是计算机的基本任务之一。
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.

因为B与A不匹配,搜索词再往后移。
3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.

接着比较字符串和搜索词的下一个字符,还是相同。
5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.

因为空格与A不匹配,继续后移一位。
12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.

下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
http://kb.cnblogs.com/page/176818/
字符串匹配的KMP算法(转)的更多相关文章
- Luogu 3375 【模板】KMP字符串匹配(KMP算法)
Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...
- 字符串匹配的 KMP算法
一般字符串匹配过程 KMP算法是字符串匹配算法的一种改进版,一般的字符串匹配算法是:从主串(目标字符串)和模式串(待匹配字符串)的第一个字符开始比较,如果相等则继续匹配下一个字符, 如果不相等则从主串 ...
- 字符串匹配的kmp算法 及 python实现
一:背景 给定一个主串(以 S 代替)和模式串(以 P 代替),要求找出 P 在 S 中出现的位置,此即串的模式匹配问题. Knuth-Morris-Pratt 算法(简称 KMP)是解决这一问题的常 ...
- HDU 1711 Number Sequence (字符串匹配,KMP算法)
HDU 1711 Number Sequence (字符串匹配,KMP算法) Description Given two sequences of numbers : a1, a2, ...... , ...
- 字符串匹配(KMP 算法 含代码)
主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...
- 实现字符串匹配的KMP算法
KMP算法是Knuth-Morris-Pratt算法的简称,它主要用于解决在一个长字符串S中匹配一个较短字符串s. 首先我们从整体来把我这个算法的思想. 字符串匹配的朴素算法: 我们容易想到朴素算法, ...
- 字符串匹配的KMP算法
~~~摘录 来源:阮一峰~~~ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”? 许 ...
- 字符串匹配的KMP算法详解及C#实现
字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...
- 字符串匹配与KMP算法实现
>>字符串匹配问题 字符串匹配问题即在匹配串中寻找模式串是否出现, 首先想到的是使用暴力破解,也就是Brute Force(BF或蛮力搜索) 算法,将匹配串和模式串左对齐,然后从左向右一个 ...
- 字符串匹配的KMP算法(转)
转载:http://kb.cnblogs.com/page/176818/ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE&quo ...
随机推荐
- Java中怎么控制线程訪问资源的数量
在API中是这样来描写叙述Semaphore 的 Semaphore 通经常使用于限制能够訪问某些资源(物理或逻辑的)的线程数目. 一个计数信号量.从概念上讲,信号量维护了一个许可集.如有必要,在许可 ...
- EasyUI - Progressbar 进度条控件
效果: html代码: <div id="p" style="width:400px;"></div> JS代码: $(function ...
- 解决Ajax.BeginForm还是刷新页面的问题
在.net mvc中用Ajax.BeginForm来实现异步提交,在Ajax.BeginForm里面还是可以用submit按钮,一般来说 submit按钮是提交整个页面的数据.但是在Ajax.Begi ...
- boost::asio网络传输错误码的一些实验结果(recv error_code)
错误码很重要,可以由此判断网络连接到底发生了神马事情,从而驱动高层逻辑的行为.只有笼统的错误码判断的网络层是不够规范的,鄙人觉得有些错误码还是需要在网络层就区分开的,特此记录一些当前实验的错误码以及发 ...
- sublime搜索和替换--正则
Search and Replace Sublime Text features two main types of search: Search - Single File Search - Mul ...
- 2014 Multi-University Training Contest 1 — D. Task
题目链接:pid=4864">http://acm.hdu.edu.cn/showproblem.php?pid=4864 题目大意: 有N个机器.M个任务. 当中每一个机器有xi,y ...
- POJ1087 A Plug for UNIX 【最大流】
A Plug for UNIX Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13855 Accepted: 4635 ...
- 用Python实现QQ找茬游戏外挂工具
源地址:http://cpiz.net/blog/2012/03/a_qq_zhaocha_assistant_by_python/ (原创作品,转载请注明出处)好久没写技术相关的博文,这次写篇有意思 ...
- maven项目配置Project Facets时further configuration available不出来问题
如果下边的 further configuration available不出来 把Dynamic web module 去掉勾选,应用与项目,然后再点开项目的properties,再选中Dynami ...
- Common Lisp Style Guide - Ariel Networks Labs
Common Lisp Style Guide - Ariel Networks Labs Common Lisp Style Guide