当触发一个RDD的action后。以count为例,调用关系例如以下:

  1. org.apache.spark.rdd.RDD#count
  2. org.apache.spark.SparkContext#runJob
  3. org.apache.spark.scheduler.DAGScheduler#runJob
  4. org.apache.spark.scheduler.DAGScheduler#submitJob
  5. org.apache.spark.scheduler.DAGSchedulerEventProcessActor#receive(JobSubmitted)
  6. org.apache.spark.scheduler.DAGScheduler#handleJobSubmitted

当中步骤五的DAGSchedulerEventProcessActor是DAGScheduler 的与外部交互的接口代理,DAGScheduler在创建时会创建名字为eventProcessActor的actor。这个actor的作用看它的实现就一目了然了:

  /**
* The main event loop of the DAG scheduler.
*/
def receive = {
case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
listener, properties) // 提交job。来自与RDD->SparkContext->DAGScheduler的消息。 之所以在这须要在这里中转一下,是为了模块功能的一致性。 case StageCancelled(stageId) => // 消息源org.apache.spark.ui.jobs.JobProgressTab,在GUI上显示一个SparkContext的Job的执行状态。
// 用户能够cancel一个Stage。会通过SparkContext->DAGScheduler 传递到这里。
dagScheduler.handleStageCancellation(stageId) case JobCancelled(jobId) => // 来自于org.apache.spark.scheduler.JobWaiter的消息。取消一个Job
dagScheduler.handleJobCancellation(jobId) case JobGroupCancelled(groupId) => // 取消整个Job Group
dagScheduler.handleJobGroupCancelled(groupId) case AllJobsCancelled => //取消全部Job
dagScheduler.doCancelAllJobs() case ExecutorAdded(execId, host) => // TaskScheduler得到一个Executor被加入的消息。详细来自org.apache.spark.scheduler.TaskSchedulerImpl.resourceOffers
dagScheduler.handleExecutorAdded(execId, host) case ExecutorLost(execId) => //来自TaskScheduler
dagScheduler.handleExecutorLost(execId) case BeginEvent(task, taskInfo) => // 来自TaskScheduler
dagScheduler.handleBeginEvent(task, taskInfo) case GettingResultEvent(taskInfo) => //处理获得TaskResult信息的消息
dagScheduler.handleGetTaskResult(taskInfo) case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) => //来自TaskScheduler,报告task是完毕或者失败
dagScheduler.handleTaskCompletion(completion) case TaskSetFailed(taskSet, reason) => //来自TaskScheduler,要么TaskSet失败次数超过阈值或者因为Job Cancel。
dagScheduler.handleTaskSetFailed(taskSet, reason) case ResubmitFailedStages => //当一个Stage处理失败时,重试。来自org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion
dagScheduler.resubmitFailedStages()
}

总结一下org.apache.spark.scheduler.DAGSchedulerEventProcessActor的作用:能够把他理解成DAGScheduler的对外的功能接口。

它对外隐藏了自己内部实现的细节。也更易于理解其逻辑;也减少了维护成本,将DAGScheduler的比較复杂功能接口化。

handleJobSubmitted

org.apache.spark.scheduler.DAGScheduler#handleJobSubmitted首先会依据RDD创建finalStage。

finalStage,顾名思义,就是最后的那个Stage。

然后创建job,最后提交。

提交的job假设满足一下条件。那么它将以本地模式执行:

1)spark.localExecution.enabled设置为true  而且 2)用户程序显式指定能够本地执行 而且 3)finalStage的没有父Stage 而且 4)仅有一个partition

3)和 4)的话主要为了任务能够高速执行。假设有多个stage或者多个partition的话,本地执行可能会因为本机的计算资源的问题而影响任务的计算速度。

要理解什么是Stage。首先要搞明确什么是Task。Task是在集群上执行的基本单位。一个Task负责处理RDD的一个partition。RDD的多个patition会分别由不同的Task去处理。

当然了这些Task的处理逻辑全然是一致的。

这一组Task就组成了一个Stage。有两种Task:

  1. org.apache.spark.scheduler.ShuffleMapTask
  2. org.apache.spark.scheduler.ResultTask

ShuffleMapTask依据Task的partitioner将计算结果放到不同的bucket中。而ResultTask将计算结果发送回Driver Application。一个Job包括了多个Stage,而Stage是由一组全然同样的Task组成的。

最后的Stage包括了一组ResultTask。

在用户触发了一个action后,比方count,collect。SparkContext会通过runJob的函数開始进行任务提交。最后会通过DAG的event processor 传递到DAGScheduler本身的handleJobSubmitted,它首先会划分Stage,提交Stage,提交Task。

至此,Task就開始在执行在集群上了。

一个Stage的開始就是从外部存储或者shuffle结果中读取数据;一个Stage的结束就是因为发生shuffle或者生成结果时。

创建finalStage

handleJobSubmitted 通过调用newStage来创建finalStage:

finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite)

创建一个result stage。或者说finalStage,是通过调用org.apache.spark.scheduler.DAGScheduler#newStage完毕的。而创建一个shuffle stage,须要通过调用org.apache.spark.scheduler.DAGScheduler#newOrUsedStage。

private def newStage(
rdd: RDD[_],
numTasks: Int,
shuffleDep: Option[ShuffleDependency[_, _, _]],
jobId: Int,
callSite: CallSite)
: Stage =
{
val id = nextStageId.getAndIncrement()
val stage =
new Stage(id, rdd, numTasks, shuffleDep, getParentStages(rdd, jobId), jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}

对于result 的final stage来说。传入的shuffleDep是None。

我们知道。RDD通过org.apache.spark.rdd.RDD#getDependencies能够获得它依赖的parent RDD。

而Stage也可能会有parent Stage。

看一个RDD论文的Stage划分吧:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYW56aHNvZnQ=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />

一个stage的边界。输入是外部的存储或者一个stage shuffle的结果;输入则是Job的结果(result task相应的stage)或者shuffle的结果。

上图的话stage3的输入则是RDD A和RDD F shuffle的结果。

而A和F因为到B和G须要shuffle,因此须要划分到不同的stage。

从源代码实现的角度来看。通过触发action也就是最后一个RDD创建final stage(上图的stage 3),我们注意到new Stage的第五个參数就是该Stage的parent Stage:通过rdd和job id获取:

// 生成rdd的parent Stage。没遇到一个ShuffleDependency。就会生成一个Stage
private def getParentStages(rdd: RDD[_], jobId: Int): List[Stage] = {
val parents = new HashSet[Stage] //存储parent stage
val visited = new HashSet[RDD[_]] //存储已经被訪问到得RDD
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting // 存储须要被处理的RDD。Stack中得RDD都须要被处理。 val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
// Kind of ugly: need to register RDDs with the cache here since
// we can't do it in its constructor because # of partitions is unknown
for (dep <- r.dependencies) {
dep match {
case shufDep: ShuffleDependency[_, _, _] => // 在ShuffleDependency时须要生成新的stage
parents += getShuffleMapStage(shufDep, jobId)
case _ =>
waitingForVisit.push(dep.rdd) //不是ShuffleDependency,那么就属于同一个Stage
}
}
}
}
waitingForVisit.push(rdd) // 输入的rdd作为第一个须要处理的RDD。 然后从该rdd開始。顺序訪问其parent rdd
while (!waitingForVisit.isEmpty) { //仅仅要stack不为空。则一直处理。
visit(waitingForVisit.pop()) //每次visit假设遇到了ShuffleDependency,那么就会形成一个Stage,否则这些RDD属于同一个Stage
}
parents.toList
}

生成了finalStage后。就须要提交Stage了。

  // 提交Stage,假设有parent Stage没有提交,那么递归提交它。
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
// 假设当前stage不在等待其parent stage的返回。而且 不在执行的状态, 而且 没有已经失败(失败会有重试机制,不会通过这里再次提交)
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing == Nil) { // 假设全部的parent stage都已经完毕,那么提交该stage所包括的task
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) { // 有parent stage为完毕,则递归提交它
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id)
}
}

DAGScheduler将Stage划分完毕后,提交实际上是通过把Stage转换为TaskSet,然后通过TaskScheduler将计算任务终于提交到集群。

其所在的位置例如以下图所看到的。

接下来,将分析Stage是怎样转换为TaskSet,并终于提交到Executor去执行的。

BTW。近期工作太忙了,基本上到家洗漱完都要10点多。

也再没有精力去进行源代码解析了。幸运的是周末不用加班。因此以后的博文更新都要集中在周末了。加油。

Spark技术内幕:Stage划分及提交源代码分析的更多相关文章

  1. Spark技术内幕: Task向Executor提交的源代码解析

    在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...

  2. Spark技术内幕: Task向Executor提交的源码解析

    在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...

  3. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  4. Spark技术内幕:Master的故障恢复

    Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...

  5. Spark技术内幕:Client,Master和Worker 通信源代码解析

    Spark的Cluster Manager能够有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义 ...

  6. Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源代码实现

    假设Spark的部署方式选择Standalone,一个採用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure).Spark能够 ...

  7. Spark技术内幕:究竟什么是RDD

    RDD是Spark最基本,也是最根本的数据抽象.http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf 是关于RDD的论文.如果觉得英 ...

  8. Spark技术内幕:Client,Master和Worker 通信源码解析

    http://blog.csdn.net/anzhsoft/article/details/30802603 Spark的Cluster Manager可以有几种部署模式: Standlone Mes ...

  9. 我的第一本著作:Spark技术内幕上市!

    现在各大网站销售中! 京东:http://item.jd.com/11770787.html 当当:http://product.dangdang.com/23776595.html 亚马逊:http ...

随机推荐

  1. C++晋升之std中vector的实现原理(标准模板动态库中矢量的实现原理)

    我们实现的数据结构是为了解决在执行过程中动态的开辟空间使用(比如我们不停的输入,输入的多少我们不确定) 假设当你看到这篇文章的话,就当作是零食咀嚼,营养没有有BUG,能够直接看我博客中文章:CPU对内 ...

  2. HDOJ 4883 TIANKENG’s restaurant

    称号: TIANKENG's restaurant Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Ja ...

  3. Qt制作应用插件

    在Qt下,插件有两种形式,一种是用于QtCreator下,扩展IDE功能.另一种是用于扩展开发者的应用.本文要讲的是后者. 定义一个纯虚类作为插件接口 #include <QtPlugin> ...

  4. grep、sed、awk、perl、js、vim等对正则表达式的支持的差别

    grep.sed.awk.perl等对正则表达式的支持的差别 grep 2.5.1 egrep 2.5.1 sed 3.02 sed 4.07 awk 3.1.1 perl 5.8.0 vim 6.1 ...

  5. HDU 4981 Goffi and Median(水)

    HDU 4981 Goffi and Median 思路:排序就能够得到中间数.然后总和和中间数*n比較一下就可以 代码: #include <cstdio> #include <c ...

  6. OpenJDK1.8.0 源码解析————HashMap的实现(二)

    上一篇文章介绍了HashMap的一部分的知识,算是为下面HashMap的进一步学习做准备吧. 然后写的时候一直在思考的一个问题是,这方面的知识网上的资料也是一抓一大把,即使是这样我为什么还要花费时间去 ...

  7. find . -iname "*.jpg"|xargs -i mv {} .;for i in `ls`; do mv -f $i `echo $i | sed 's/JPG/jpg/'`; done

    find . -iname "*.jpg"|xargs -i mv {} .;for i in `ls`; do mv -f $i `echo $i | sed 's/JPG/jp ...

  8. Java经典面试题及详解

    Java基础方面:   1.作用域public,private,protected,以及不写时的区别 答:区别如下:  作用域           当前类       同一package       ...

  9. 《powershell 的版本号所引起的载入 FSharp 编译器问题》基本解决

    <powershell 的版本号所引起的载入 FSharp 编译器问题>基本解决 1.FSharp.Core.dll.不光要 Add-Type,还要在编译中引用.可是,在 VS2012 的 ...

  10. Delphi5 update1的序列号

    好不容易找到一个: Serial Number: 100-006-1659Key: 6ax0-91x0 ------------------------------------------- 办法2: ...