【Machine Learning in Action --4】朴素贝叶斯过滤网站的恶意留言
背景:以在线社区的留言板为例,为了不影响社区的发展,我们需要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标识为内容不当。过滤这类内容是一个很常见的需求,对此问题建立两个类别:侮辱类和非侮辱类,使用0和1分别表示。
接下来首先给出将文本转换为数字向量的过程,然后介绍如何基于这些向量来计算条件概率,并在此基础上构建分类器。创建一个bayes.py的新文件
1、准备数据:从文本中构建词向量
要从文本中获取特征,需要先拆分文本,这里的特征来自文本的词条(token),一个词条是字符的任意组合。可以把词条想象为单词,也可以使用非单词词条,如:URL、IP地址或者任意其他字符串。然后将每一个文本片段表示为一个词条向量,其中值为1表示词条出现在文档,0表示词条未出现。
我们将把文本看成单词向量或者词条向量,也就是说将句子抓换为向量。考虑出现在所有文档中的所有单词,再决定将那些词纳入词汇表或者说所要的词汇集合,然后必须要将每一篇文档转换为词汇表上的向量。
#词表到向量的转换函数
#!/usr/bin/python
# -*- coding: utf-8 -*-
from numpy import *
def loadDataSet():
postingList=[['my','dog','has','flea','problem','help','please'],\
['maybe','not','take','him','to','dog','park','stupid'],\
['my','dalmation','is','so','cute','I','love','him'],\
['stop','posting','stupid','worthless','garbage'],\
['mr','licks','ate','my','steak','how','to','stop','him'],\
['quit','buying','worthless','dog','food','stupid']]
classVec=[0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论
return postingList,classVec
#创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
vocabSet=set([]) #创建一个空集
for document in dataSet:
vocabSet=vocabSet|set(document) #创建两个集合的并集,set会返回一个不重复词表
return list(vocabSet)
#该函数输入参数为词汇表及其某个文档,输出是文档向量
def setOfWords2Vec(vocabList,inputSet):
returnVec=[0]*len(vocabList) #创建一个和词汇表等长的向量,并将其元素都设置为0
for word in inputSet: #遍历输入文档中所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
if word in inputSet:
returnVec[vocabList.index(word)]=1
else:print "the word:%s is not in my Vocabulary!" % word
return returnVec
保存bayes.py文件,然后在python提示符下输入:
>>> import bayes
>>> listOPosts,listClasses=bayes.loadDataSet()
>>> myVocabList=bayes.createVocabList(listOPosts)
>>> myVocabList
['cute', 'love', 'help', 'garbage', 'quit', 'I', 'stop', 'is', 'park', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how', 'stupid', 'so', 'take', 'mr', 'problem', 'steak', 'my']
>>> bayes.setOfWords2Vec(myVocabList,listOPosts[0])
[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1]
>>> bayes.setOfWords2Vec(myVocabList,listOPosts[1])
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0]
>>> bayes.setOfWords2Vec(myVocabList,listOPosts[2])
[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
>>> bayes.setOfWords2Vec(myVocabList,listOPosts[3])
[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
>>> bayes.setOfWords2Vec(myVocabList,listOPosts[4])
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1]
>>> bayes.setOfWords2Vec(myVocabList,listOPosts[5])
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
2、训练算法:从词向量计算概率
前面介绍了如何将一组单词转换为一组数字,接下来看看如何使用这些数字计算概率。现在已经知道一个词是否出现在一篇文档中,也知道该文档所属类别。
(1)
首先通过类别i中文档数除以总的文档数来计算概率P(Ci),然后计算P(w|Ci),即P(w0|Ci)P(w1Ci)...P(wN|Ci)来计算上述概率。
#朴素贝叶斯分类器训练函数
def trainNBO(trainMatrix,trainCategory):
numTrainDocs=len(trainMatrix)
numWords=len(trainMatrix[0])
pAbusive=sum(trainCategory)/float(numTrainDocs)
p0Num=zeros(numWords);p1Num=zeros(numWords)
p0Demo=0.0;p1Demo=0.0 #初始化概率
for i in range(numTrainDocs):
if trainCategory[i]==1:
p1Num+=trainMatrix[i]
p1Demo+=sum(trainMatrix[i])
else:
p0Num+=trainMatrix[i]
p0Demo+=sum(trainMatrix[i])
p1Vect=p1Num/p1Demo
p0Vect=p0Num/p0Demo
return p0Vect,p1Vect,pAbusive
将上述代码添加到bayes.py文件中,在python提示符下输入:
>>> reload(bayes)
<module 'bayes' from 'bayes.py'>
>>> listOPosts,listClass=bayes.loadDataSet()
>>> listOPosts
[['my', 'dog', 'has', 'flea', 'problem', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
>>> listClasses
[0, 1, 0, 1, 0, 1]
>>> myVocabList=bayes.createVocabList(listOPosts)
>>> trainMat=[]
>>> trainMat
[[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]]
>>> p0V,p1V,pAb=bayes.trainNBO(trainMat,listClasses)
>>> pAb
0.5
>>> p0V #求的是p(w|C0),0.04166667=(cute在非侮辱文档0、2、4中cute出现的总次数)/(非侮辱文档中的总词条数)=1/24)
array([ 0.04166667, 0.04166667, 0.04166667, 0. , 0. ,
0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667,
0.04166667, 0.04166667, 0. , 0. , 0.08333333,
0. , 0. , 0.04166667, 0. , 0.04166667,
0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667,
0. , 0.04166667, 0. , 0.04166667, 0.04166667,
0.04166667, 0.125 ])
>>> p1V #求的是p(w|C1),0.15789474=(stupid在侮辱文档1、3、5中stupid出现的总次数)/(侮辱文档中的总词条数)=3/19)
array([ 0. , 0. , 0. , 0.05263158, 0.05263158,
0. , 0.05263158, 0. , 0.05263158, 0. ,
0. , 0. , 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0. , 0.10526316, 0. ,
0.05263158, 0.05263158, 0. , 0.10526316, 0. ,
0.15789474, 0. , 0.05263158, 0. , 0. ,
0. , 0. ])
解释:
>>> numTrainDocs=len(trainMat)
>>> numTrainDocs
6
>>> numWords=len(trainMat[0])
>>> numWords
32
>>> from numpy import *
>>> p0Num=zeros(numWords);p1Num=zeros(numWords);p0Demo=0.0;p1Demo=0.0
>>> p0Num
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>> for i in range(numTrainDocs):
... if listClasses[i]==1:
... p1Num+=trainMat[i]
... p1Demo+=sum(trainMat[i])
... else:
... p0Num+=trainMat[i]
... p0Demo+=sum(trainMat[i])
...
>>> p0Num
array([ 1., 1., 1., 0., 0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 2., 0., 0., 1., 0., 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 1., 1., 3.]) #trainMat的第一行、三行、五行非侮辱性文档词向量相加
>>> p0Demo
24.0
>>> p1Num
array([ 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 1., 0., 2., 0., 1., 1., 0., 2., 0., 3., 0., 1., 0., 0., 0., 0.]) #trainMat的第二行、四行、六行非侮辱性文档词向量相加
>>> p1Demo
19.0
3、测试算法:根据现实情况修改分类器
利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算P(w0|1)P(w1|1)P(w2|1)...,如果其中一个概率值为0,那么最后的乘积也为0。为降低这种影响,可以将所有词的出现次数初始化为1,并将分母初始化为2。修改trainNBO()的相应位置的代码:
p0Num=ones(numWords);p1Num=ones(numWords) #计算p(w0|1)p(w1|1),避免其中一个概率值为0,最后的乘积为0
p0Demo=2.0;p1Demo=2.0 #初始化概率
p1Vect=log(p1Num/p1Demo) #计算p(w0|1)p(w1|1)时,大部分因子都非常小,程序会下溢出或得不到正确答案(相乘许多很小数,最后四舍五入会得到0)
p0Vect=log(p0Num/p0Demo)
运行后:
>>> reload(bayes)
<module 'bayes' from 'bayes.py'>
>>> listOPosts,listClass=bayes.loadDataSet()
>>> listOPosts
[['my', 'dog', 'has', 'flea', 'problem', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
>>> listClasses
[0, 1, 0, 1, 0, 1]
>>> myVocabList=bayes.createVocabList(listOPosts)
>>> trainMat=[]
>>> trainMat
[[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]]
>>> p0V,p1V,pAb=bayes.trainNBO(trainMat,listClasses)
>>> pAb
0.5
>>> p0V #求的是p(w|C0),-2.56494936=log((cute在非侮辱文档0、2、4中cute出现的总次数)/(非侮辱文档中的总词条数))=log(2/26))
array([-2.56494936, -2.56494936, -2.56494936, -3.25809654, -3.25809654,
-2.56494936, -2.56494936, -2.56494936, -3.25809654, -2.56494936,
-2.56494936, -2.56494936, -3.25809654, -3.25809654, -2.15948425,
-3.25809654, -3.25809654, -2.56494936, -3.25809654, -2.56494936,
-2.56494936, -3.25809654, -2.56494936, -2.56494936, -2.56494936,
-3.25809654, -2.56494936, -3.25809654, -2.56494936, -2.56494936,
-2.56494936, -1.87180218])
>>> p1V #求的是p(w|C1),-1.65822808=log((stupid在侮辱文档1、3、5中stupid出现的总次数)/(侮辱文档中的总词条数))=log(4/21))
array([-3.04452244, -3.04452244, -3.04452244, -2.35137526, -2.35137526,
-3.04452244, -2.35137526, -3.04452244, -2.35137526, -3.04452244,
-3.04452244, -3.04452244, -2.35137526, -2.35137526, -2.35137526,
-2.35137526, -2.35137526, -3.04452244, -1.94591015, -3.04452244,
-2.35137526, -2.35137526, -3.04452244, -1.94591015, -3.04452244,
-1.65822808, -3.04452244, -2.35137526, -3.04452244, -3.04452244,
-3.04452244, -3.04452244])
解释:
>>> numTrainDocs=len(trainMat)
>>> numTrainDocs
6
>>> numWords=len(trainMat[0])
>>> numWords
32
>>> from numpy import *
>>> p0Num=ones(numWords);p1Num=ones(numWords);p0Demo=2.0;p1Demo=2.0
>>> p0Num
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
>>> for i in range(numTrainDocs):
... if listClasses[i]==1:
... p1Num+=trainMat[i]
... p1Demo+=sum(trainMat[i])
... else:
... p0Num+=trainMat[i]
... p0Demo+=sum(trainMat[i])
...
>>> p0Num
array([ 2., 2., 2., 1., 1., 2., 2., 2., 1., 2., 2., 2., 1., 1., 3., 1., 1., 2., 1., 2., 2., 1., 2., 2., 2., 1., 2., 1., 2., 2., 2., 4.])
>>> p0Demo
26.0
>>> sum(p0Num)
56.0
>>> p1Num
array([ 1., 1., 1., 2., 2., 1., 2., 1., 2., 1., 1., 1., 2., 2., 2., 2., 2., 1., 3., 1., 2., 2., 1., 3., 1., 4., 1., 2., 1., 1., 1., 1.])
>>> p1Demo
21.0
>>> sum(p1Num)
51.0
#朴素贝叶斯分类函数
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #vec2Classify表示要分类的向量
p1=sum(vec2Classify*p1Vec)+log(pClass1) #这里的相乘是指对应元素相乘,即先将两个向量中的第1个元素相乘,然后将第2个元素相乘,以此类推,接下来将词汇表中所有词的对应值相加,然后将该值家到类别的对数频率上。
p0=sum(vec2Classify*p0Vec)+log(1.0-pClass1)
if p1>p0:
return 1
else:
return 0
def testingNB():
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
p0V,p1V,pAb=trainNBO(array(trainMat),array(listClasses))
testEntry=['love','my','dalmation']
thisDoc=array(setOfWords2Vec(myVocabList,testEntry))
print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)
testEntry=['stupid','garbage']
thisDoc=array(setOfWords2Vec(myVocabList,testEntry))
print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)
将上述代码添加到bayes.py文件中,在python提示符下输入:
>>> reload(bayes)
<module 'bayes' from 'bayes.pyc'>
>>> bayes.testingNB()
['love', 'my', 'dalmation'] classified as: 0
['stupid', 'garbage'] classified as: 1
【Machine Learning in Action --4】朴素贝叶斯过滤网站的恶意留言的更多相关文章
- Machine Learning in Action(3) 朴素贝叶斯算法
贝叶斯决策一直很有争议,今年是贝叶斯250周年,历经沉浮,今天它的应用又开始逐渐活跃,有兴趣的可以看看斯坦福Brad Efron大师对其的反思,两篇文章:“Bayes'Theorem in the 2 ...
- 《Machine Learning in Action》—— 白话贝叶斯,“恰瓜群众”应该恰好瓜还是恰坏瓜
<Machine Learning in Action>-- 白话贝叶斯,"恰瓜群众"应该恰好瓜还是恰坏瓜 概率论,可以说是在机器学习当中扮演了一个非常重要的角色了.T ...
- machine learning for hacker记录(3) 贝叶斯分类器
本章主要介绍了分类算法里面的一种最基本的分类器:朴素贝叶斯算法(NB),算法性能正如英文缩写的一样,很NB,尤其在垃圾邮件检测领域,关于贝叶斯的网上资料也很多,这里推荐那篇刘未鹏写的http://mi ...
- 吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件
使用朴素贝叶斯解决一些现实生活中 的问题时,需要先从文本内容得到字符串列表,然后生成词向量. 准备数据:切分文本 测试算法:使用朴素贝叶斯进行交叉验证 文件解析及完整的垃圾邮件测试函数 def cre ...
- 《Machine Learning in Action》—— 浅谈线性回归的那些事
<Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K ...
- 《Machine Learning in Action》—— Taoye给你讲讲Logistic回归是咋回事
在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕 ...
- 机器学习实战 [Machine learning in action]
内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属 ...
- 朴素贝叶斯python实现
概率论是非常多机器学习算法基础,朴素贝叶斯分类器之所以称为朴素,是由于整个形式化过程中仅仅做最原始.简单的如果. (这个如果:问题中有非常多特征,我们简单如果一个个特征是独立的.该如果称做条件独立性, ...
- 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)
第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...
随机推荐
- USACO 3.2 Factorials
Factorials The factorial of an integer N, written N!, is the product of all the integers from 1 thro ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
- Android使用Eclipse遇到"java.lang.ClassNotFoundException"
最近遇到个Android Jar的问题,找了几天才找到root cause. 在此记录下. 我们的Android项目需要使用一个供应商的Jar. 我们使用的开发环境为:Eclipse + ADT插件( ...
- div套div 里面div有浮动 外面div自适应高度
<div style="background-color:red;"> <div style="float:left;background-color: ...
- Openjudge-NOI题库-垂直直方图
题目描述 Description 写一个程序从输入文件中去读取四行大写字母(全都是大写的,每行不超过72个字符),然后用柱状图输出每个字符在输入文件中出现的次数.严格地按照输出样例来安排你的输出格式. ...
- 洛谷-谁拿了最多奖学金-NOIP2005提高组复赛
题目描述 Description 某校的惯例是在每学期的期末考试之后发放奖学金.发放的奖学金共有五种,获取的条件各自不同: 1) 院士奖学金,每人8000元,期末平均成绩高于80分(>8 ...
- VFL语言
VFL语言 VFL即Visual Format Language,可视化格式语言 NSDictionaryOfVariableBindings(testViewA, testViewB):此为一个宏, ...
- logger日志工具类
日志工厂类 package cn.itcast.utils; import java.util.logging.FileHandler; import java.util.logging.Handle ...
- Oracle SQL 关键字
1.UID返回标识当前用户的唯一整数SQL> show userUSER 为"GAO"SQL> select username,user_id from dba_use ...
- iOS 富文本点击事件
#import "ViewController.h" #define font 17 @interface ViewController ()<UITextViewDeleg ...