POJ 1300 Door Man - from lanshui_Yang
Description
- Always shut open doors behind you immediately after passing through
- Never open a closed door
- End up in your chambers (room 0) with all doors closed
In this problem, you are given a list of rooms and open doors between them (along with a starting room). It is not needed to determine a route, only if one is possible.
Input
A single data set has 3 components:
- Start line - A single line, "START M N", where M indicates the butler's starting room, and N indicates the number of rooms in the house (1 <= N <= 20).
- Room list - A series of N lines. Each line lists, for a single room, every open door that leads to a room of higher number. For example, if room 3 had open doors to rooms 1, 5, and 7, the line for room 3 would read "5 7". The first line in the list represents room 0. The second line represents room 1, and so on until the last line, which represents room (N - 1). It is possible for lines to be empty (in particular, the last line will always be empty since it is the highest numbered room). On each line, the adjacent rooms are always listed in ascending order. It is possible for rooms to be connected by multiple doors!
- End line - A single line, "END"
Following the final data set will be a single line, "ENDOFINPUT".
Note that there will be no more than 100 doors in any single data set.
Output
Sample Input
START 1 2
1 END
START 0 5
1 2 2 3 3 4 4 END
START 0 10
1 9
2
3
4
5
6
7
8
9 END
ENDOFINPUT
Sample Output
YES 1
NO
YES 10
题目大意不在敖述,此题是一道典型的求无向图中有无欧拉回路或欧拉通路的问题。首先是建图:以房间为顶点,房间之间的门为边建立无向图。然后就是输入问题,要求大家对字符串的有较好的处理能力,我用的是getchar()。然后请看代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<queue>
using namespace std ;
const int MAXN = 105 ;
const int INF = 0x7fffffff ;
int d[MAXN] ; // 建立顶点的度的数组
int main()
{
string s ;
int m , n ;
int sumt , sumj , sumd ;
while (cin >> s)
{
if(s == "START")
{
scanf("%d%d" , &m , &n) ;
getchar() ; // 处理刚才的回车,此处千万不要忘记 !!
memset(d , 0 , sizeof(d)) ;
int i ;
sumd = 0 ; // 统计边的数目,即门的数目
int pan = 0 ; // 注意这个判断变量的应用,请大家自己体会 !!
for(i = 0 ; i < n ; i ++)
{
sumt = 0 ;
char t ;
while (1)
{
t = getchar() ;
if(t == '\n')
{
if(pan)
{
d[i] ++ ;
d[sumt] ++ ;
sumd ++ ;
pan = 0 ;
}
break ;
}
if(t == ' ')
{
d[i] ++ ;
d[sumt] ++ ;
sumd ++ ;
sumt = 0 ;
}
else
{
sumt = sumt * 10 + t - '0' ;
pan = 1 ;
}
}
}
}
if(s == "END")
{
int j ;
sumj = 0 ; // 统计奇度顶点的个数
for(j = 0 ; j < n ; j ++)
{
if(d[j] % 2 == 1)
{
sumj ++ ;
}
}
if(sumj > 2 || sumj == 1)
{
printf("NO\n") ;
}
else if(sumj == 0 && m != 0)
{
printf("NO\n") ;
}
else if(sumj == 2 && (d[m] % 2 != 1 || d[0] % 2 != 1))
{
printf("NO\n") ;
}
else if(sumj == 2 && d[m] % 2 == 1 && d[0] % 2 == 1 && m == 0)
{
printf("NO\n") ;
}
else
{
printf("YES %d\n" ,sumd) ;
}
}
if(s == "ENDOFINPUT")
{
break ;
}
}
return 0 ;
}
POJ 1300 Door Man - from lanshui_Yang的更多相关文章
- POJ 1300 Door Man(欧拉回路的判定)
题目链接 题意 : 庄园有很多房间,编号从0到n-1,能否找到一条路径经过所有开着的门,并且使得通过门之后就把门关上,关上的再也不打开,最后能回到编号为0的房间. 思路 : 这就是一个赤裸裸的判断欧拉 ...
- poj 1300 Door Man 欧拉回路
题目链接:http://poj.org/problem?id=1300 You are a butler in a large mansion. This mansion has so many ro ...
- POJ 1300.Door Man 欧拉通路
Door Man Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2596 Accepted: 1046 Descript ...
- poj 1300 欧拉图
http://poj.org/problem?id=1300 要不是书上有翻译我估计要卡死,,,首先这是一个连通图,鬼知道是那句话表示出来的,终点必须是0,统计一下每个点的度数,如果是欧拉回路那么起点 ...
- [欧拉回路] poj 1300 Door Man
题目链接: http://poj.org/problem?id=1300 Door Man Time Limit: 1000MS Memory Limit: 10000K Total Submis ...
- POJ 2513 Colored Sticks - from lanshui_Yang
题目大意:给定一捆木棒,每根木棒的每个端点涂有某种颜色.问:是否能将这些棒子首位项链,排成一条直线,且相邻两根棍子的连接处的颜色一样. 解题思路:此题是一道典型的判断欧拉回路或欧拉通路的问题,以木棍的 ...
- POJ 1300 欧拉通路&欧拉回路
系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...
- POJ 3177 Redundant Paths - from lanshui_Yang
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- POJ 1300 最基础的欧拉回路问题
题目大意: 从0~n-1编号的房间,从一个起点开始最后到达0号房间,每经过一扇门就关上,问最后能否通过所有门且到达0号房间 我觉得这道题的输入输出格式是我第一次遇到,所以在sscanf上也看了很久 每 ...
随机推荐
- WCF技术剖析之二十一: WCF基本的异常处理模式[上篇]
原文:WCF技术剖析之二十一: WCF基本的异常处理模式[上篇] 由于WCF采用.NET托管语言(C#和NET)作为其主要的编程语言,注定以了基于WCF的编程方式不可能很复杂.同时,WCF设计的一个目 ...
- exe4教程
exe4j_windows-x64_5_0_1.exe <?xml version="1.0" encoding="UTF-8"?> <exe ...
- 立波 iphone3gs越狱教程:成功把iphone3gs手机升级成ios6.1.3系统,完美越狱,解决no service和耗电量大的问题
前几天,老婆使用的iphone3gs摔地了,把手机里的连接电源的那个神马线给搞坏了,结果花了200多块大洋修好了: 修好后,老婆抱怨道:5年了,这手机好多软件都装不上,说手机版本号太低了, 我就说凑合 ...
- var, object, dynamic的区别以及使用(转载)
var, object, dynamic的区别以及使用 阅读目录: 一. 为什么是它们三个 二. 能够任意赋值的原因 三. dynamic的用法 四. 使用dynamic的注意事项 拿这三者比较的原因 ...
- java调用C#的dll
链接地址:http://www.cnblogs.com/yinhaiming/articles/1712463.html .net产生的比java晚,其类库的封装在某些方面也比java更优秀,更全面. ...
- 使用boost io_service时,需要注意的东西
boost::asio 在创建io_service时,可以指定线程数,如果没有指定,默认是一个线程,也就是io_service run的那个线程,如果没有任务运行,该线程会退出. 如果在创建的时候指定 ...
- [置顶] 用mootools实现checkbox全选功能
全选时,所有的单个checkbox都要选中,反过来也可以实现 //全选按钮 $('chkall').addEvent('click',function(){ $$('input[name=" ...
- swift-var/let定义变量和常量
// Playground - noun: a place where people can play import UIKit //--------------------------------- ...
- linux编程掌握常用命令
1)编译应用程序 make -f makefile_5_2 clean make -f makefile_5_2 2)关于共享目录 在linux虚拟机的/mnt/hgfs下可看到该文件夹 3)cd命令 ...
- 【app】遍历目录所有文件
遍历目录所有文件 原创,转载时请注明,谢谢.邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:htt ...