Description

You are a butler in a large mansion. This mansion has so many rooms that they are merely referred to by number (room 0, 1, 2, 3, etc...). Your master is a particularly absent-minded lout and continually leaves doors open throughout a particular floor of the house. Over the years, you have mastered the art of traveling in a single path through the sloppy rooms and closing the doors behind you. Your biggest problem is determining whether it is possible to find a path through the sloppy rooms where you:

  1. Always shut open doors behind you immediately after passing through
  2. Never open a closed door
  3. End up in your chambers (room 0) with all doors closed

In this problem, you are given a list of rooms and open doors between them (along with a starting room). It is not needed to determine a route, only if one is possible. 

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets. 

A single data set has 3 components:

  1. Start line - A single line, "START M N", where M indicates the butler's starting room, and N indicates the number of rooms in the house (1 <= N <= 20).
  2. Room list - A series of N lines. Each line lists, for a single room, every open door that leads to a room of higher number. For example, if room 3 had open doors to rooms 1, 5, and 7, the line for room 3 would read "5 7". The first line in the list represents room 0. The second line represents room 1, and so on until the last line, which represents room (N - 1). It is possible for lines to be empty (in particular, the last line will always be empty since it is the highest numbered room). On each line, the adjacent rooms are always listed in ascending order. It is possible for rooms to be connected by multiple doors!
  3. End line - A single line, "END"

Following the final data set will be a single line, "ENDOFINPUT".

Note that there will be no more than 100 doors in any single data set.

Output

For each data set, there will be exactly one line of output. If it is possible for the butler (by following the rules in the introduction) to walk into his chambers and close the final open door behind him, print a line "YES X", where X is the number of doors he closed. Otherwise, print "NO".

Sample Input

START 1 2
1 END
START 0 5
1 2 2 3 3 4 4 END
START 0 10
1 9
2
3
4
5
6
7
8
9 END
ENDOFINPUT

Sample Output

YES 1
NO
YES 10
题目大意不在敖述,此题是一道典型的求无向图中有无欧拉回路或欧拉通路的问题。首先是建图:以房间为顶点,房间之间的门为边建立无向图。然后就是输入问题,要求大家对字符串的有较好的处理能力,我用的是getchar()。然后请看代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<queue>
using namespace std ;
const int MAXN = 105 ;
const int INF = 0x7fffffff ;
int d[MAXN] ; // 建立顶点的度的数组
int main()
{
string s ;
int m , n ;
int sumt , sumj , sumd ;
while (cin >> s)
{
if(s == "START")
{
scanf("%d%d" , &m , &n) ;
getchar() ; // 处理刚才的回车,此处千万不要忘记 !!
memset(d , 0 , sizeof(d)) ;
int i ;
sumd = 0 ; // 统计边的数目,即门的数目
int pan = 0 ; // 注意这个判断变量的应用,请大家自己体会 !!
for(i = 0 ; i < n ; i ++)
{
sumt = 0 ;
char t ;
while (1)
{
t = getchar() ;
if(t == '\n')
{
if(pan)
{
d[i] ++ ;
d[sumt] ++ ;
sumd ++ ;
pan = 0 ;
}
break ;
}
if(t == ' ')
{
d[i] ++ ;
d[sumt] ++ ;
sumd ++ ;
sumt = 0 ;
}
else
{
sumt = sumt * 10 + t - '0' ;
pan = 1 ;
}
}
}
}
if(s == "END")
{
int j ;
sumj = 0 ; // 统计奇度顶点的个数
for(j = 0 ; j < n ; j ++)
{
if(d[j] % 2 == 1)
{
sumj ++ ;
}
}
if(sumj > 2 || sumj == 1)
{
printf("NO\n") ;
}
else if(sumj == 0 && m != 0)
{
printf("NO\n") ;
}
else if(sumj == 2 && (d[m] % 2 != 1 || d[0] % 2 != 1))
{
printf("NO\n") ;
}
else if(sumj == 2 && d[m] % 2 == 1 && d[0] % 2 == 1 && m == 0)
{
printf("NO\n") ;
}
else
{
printf("YES %d\n" ,sumd) ;
}
}
if(s == "ENDOFINPUT")
{
break ;
}
}
return 0 ;
}
												

POJ 1300 Door Man - from lanshui_Yang的更多相关文章

  1. POJ 1300 Door Man(欧拉回路的判定)

    题目链接 题意 : 庄园有很多房间,编号从0到n-1,能否找到一条路径经过所有开着的门,并且使得通过门之后就把门关上,关上的再也不打开,最后能回到编号为0的房间. 思路 : 这就是一个赤裸裸的判断欧拉 ...

  2. poj 1300 Door Man 欧拉回路

    题目链接:http://poj.org/problem?id=1300 You are a butler in a large mansion. This mansion has so many ro ...

  3. POJ 1300.Door Man 欧拉通路

    Door Man Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2596   Accepted: 1046 Descript ...

  4. poj 1300 欧拉图

    http://poj.org/problem?id=1300 要不是书上有翻译我估计要卡死,,,首先这是一个连通图,鬼知道是那句话表示出来的,终点必须是0,统计一下每个点的度数,如果是欧拉回路那么起点 ...

  5. [欧拉回路] poj 1300 Door Man

    题目链接: http://poj.org/problem?id=1300 Door Man Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  6. POJ 2513 Colored Sticks - from lanshui_Yang

    题目大意:给定一捆木棒,每根木棒的每个端点涂有某种颜色.问:是否能将这些棒子首位项链,排成一条直线,且相邻两根棍子的连接处的颜色一样. 解题思路:此题是一道典型的判断欧拉回路或欧拉通路的问题,以木棍的 ...

  7. POJ 1300 欧拉通路&欧拉回路

    系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...

  8. POJ 3177 Redundant Paths - from lanshui_Yang

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  9. POJ 1300 最基础的欧拉回路问题

    题目大意: 从0~n-1编号的房间,从一个起点开始最后到达0号房间,每经过一扇门就关上,问最后能否通过所有门且到达0号房间 我觉得这道题的输入输出格式是我第一次遇到,所以在sscanf上也看了很久 每 ...

随机推荐

  1. 关于WEB三层架构的思考

    1.MVC设计思想 MVC程序设计思想是眼下比較流行的WEB开发的模式,当中,M(model)是模型.即JavaBean,用来封装和保存数据:V(view)是视图,即JSP.用来显示内容:C(cont ...

  2. C++辛格尔顿

    设计模式是编程的焦点.经常在面试时进行审查,Singleton模式是最简单的.最常见的.大部分的主模式.所以大部分的采访是测试考试的Singleton设计模式. 以下我们就来看看单例模式怎样实现(C+ ...

  3. EasyUI - NumberBox组件

    效果: html代码: <input type ="text" id ="box"/> JS代码: $(function () { $('#box' ...

  4. Qt中使用OpenCV库

    原地址:http://blog.sina.com.cn/s/blog_5c70dfc80100qwi3.html 心情真是好啊,曾经一度想放弃使用Qt加OpenCV进行数字图像处理了,幸好坚持住了,今 ...

  5. 围观M$的new

    围观M$的new 对于new一个类, M$为了拷贝和移动时的效率问题, 使用了非标准的new语法, 为了兼容性, 只能围观. http://blog.csdn.net/lostspeed/articl ...

  6. post 请求参数

    perl代码: my $login_url='http://192.168.1.1/getpage.gch?pid=1001&logout=1'; my $res = $ua->post ...

  7. css3 动画运动路径

    1.cubic-bezier贝塞尔曲线CSS3动画工具 http://www.xuanfengge.com/cubic-bezier-bezier-css3-animation-tools.html ...

  8. Linux - Linux系统目录架构

    Linux系统目录架构   Bin: 保存的是二进制可执行文件,也就是我们所敲的那些命令. Boot: 引导目录,整个操作系统的引导启动都是在boot目录下面.最主要的文件是vmLinuz-……,内核 ...

  9. 出现Data Tools 与VS 不兼容问题

    转载自:http://www.yishimei.cn/network/73.html 相信很多人都遇到了“此版本的SQL Server Data Tools与此计算机中安装的数据库运行时组件不兼容”这 ...

  10. 【翻译】ASP.NET Web API是什么?

    原文 [翻译]ASP.NET Web API是什么? 说明:随微软ASP.NET MVC 4一起发布的还有一个框架,叫做ASP.NET Web API.目前国内关注这项技术的人似乎还很少,这方面的文章 ...