loj1370(欧拉函数+线段树)
题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和。
分析:先预处理出1~1e6的欧拉函数,然后建立一颗线段树维护最大值,对于每个n询问大于等于n的最左边下标。
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1001000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int phi[N+],prime[N/],mx[N<<];
void init()
{
for(int i=;i<=N;i++)phi[i]=i;
int tot=;
for(int i=;i<=N;i++)
{
if(phi[i]==i)
{
for(int j=i;j<=N;j+=i)
phi[j]=phi[j]/i*(i-);
}
}
}
void Pushup(int rt)
{
int ls=rt<<,rs=ls|;
mx[rt]=max(mx[ls],mx[rs]);
}
void build(int l,int r,int rt)
{
if(l==r)
{
mx[rt]=phi[l];
return;
}
int m=(l+r)>>;
build(lson);
build(rson);
Pushup(rt);
}
int query(int x,int l,int r,int rt)
{
if(l==r)return l;
int m=(l+r)>>;
if(mx[rt<<]>=x)return query(x,lson);
else return query(x,rson);
}
int main()
{
int T,n,cas=;
init();
build(,N,);
T=read();
while(T--)
{
n=read();
LL ans=;
for(int i=;i<=n;i++)
{
int x=read();
ans+=query(x,,N,);
}
printf("Case %d: %lld Xukha\n",cas++,ans);
}
}
loj1370(欧拉函数+线段树)的更多相关文章
- LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)
这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)
题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]
题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...
- CF1114F Please, another Queries on Array?(线段树,数论,欧拉函数,状态压缩)
这题我在考场上也是想出了正解的……但是没调出来. 题目链接:CF原网 题目大意:给一个长度为 $n$ 的序列 $a$,$q$ 个操作:区间乘 $x$,求区间乘积的欧拉函数模 $10^9+7$ 的值. ...
随机推荐
- 在jsp页面下, 让eclipse完全支持HTML/JS/CSS智能提示(转)
我们平时用eclipse开发jsp页面时智能提示效果不太理想,今天用了两个小时发现了eclipse也可以像Visual Studio 2008那样完全智能提示HTML/JS/CSS代码,使用ecl ...
- <转载>使CSS文字图片div元素居中方法之水平居中的几个方法
文字居中,文字垂直居中水平居中,图片居中,图片水平居中垂直居中,块元素垂直居中?当我们在做前端开发是时候关于css居中的问题是很常见的.情 况有很多种,不同的情况又有不同的解决方式.水平居中的方式解决 ...
- Android 高仿 频道管理----网易、今日头条、腾讯视频 (可以拖动的GridView)附源码DEMO
距离上次发布(android高仿系列)今日头条 --新闻阅读器 (二) 相关的内容已经半个月了,最近利用空闲时间,把今日头条客户端完善了下.完善的功能一个一个全部实现后,就放整个源码.开发的进度就是按 ...
- 国际化之ResourceBundle
软件在开发时要能使它同时应对世界不同地区和国家的使用,针对不同地区和国家的访问,提供相应的,符合使用者阅读习惯的操作环境,这就必须要有国际化的概念,国际化又称为“i18n”:international ...
- App开发所要注意的几个法务问题(转)
GameLook 报道/ 移动应用市场的飞速发展催生出大量揭竿而起的开发者,同时许多矛盾也渐渐明显起来.其中涉及“抄袭”的问题尤为突出,毫不客气地说对于那些有底子的游戏厂商来说,法务已经成为团队中的一 ...
- 一种基于Qt的可伸缩的全异步C/S架构server实现(一) 综述
本文向大家介绍一种基于Qt的伸缩TCP服务实现.该实现针对C/Sclient-服务集群应用需求而搭建. 连接监听.传输数据.数据处理均在独立的线程池中进行,依据特定任务不同,可安排负责监听.传输.处理 ...
- Eclipse中导入第三方源码的问题和备用解决方案
在前篇<配置BeanUtils包,同时也是对导入第三包的步骤说明>中,我已经将[commons-beanutils-1.9.2.jar]包导入,但是在使用BeanUtils进行日期转换的过 ...
- javascript(七)document.write
<h1>test</h1> <button type="button" onclick="my_function">点击me ...
- rsync Backups for Windows
Transfer your Windows Backups to an rsync server over SSH rsync.net provides cloud storage for offsi ...
- c/c++使用VS2013连接MySQL与ubuntu下c链接mysql
vs连接数据库事实上就是将mysql数据库.h头文件接口.lib链接文件和dll运行文件增加到项目中.以下是配置怎样增加. 转于http://www.cnblogs.com/justinzhang/a ...