loj1370(欧拉函数+线段树)
题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和。
分析:先预处理出1~1e6的欧拉函数,然后建立一颗线段树维护最大值,对于每个n询问大于等于n的最左边下标。
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1001000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int phi[N+],prime[N/],mx[N<<];
void init()
{
for(int i=;i<=N;i++)phi[i]=i;
int tot=;
for(int i=;i<=N;i++)
{
if(phi[i]==i)
{
for(int j=i;j<=N;j+=i)
phi[j]=phi[j]/i*(i-);
}
}
}
void Pushup(int rt)
{
int ls=rt<<,rs=ls|;
mx[rt]=max(mx[ls],mx[rs]);
}
void build(int l,int r,int rt)
{
if(l==r)
{
mx[rt]=phi[l];
return;
}
int m=(l+r)>>;
build(lson);
build(rson);
Pushup(rt);
}
int query(int x,int l,int r,int rt)
{
if(l==r)return l;
int m=(l+r)>>;
if(mx[rt<<]>=x)return query(x,lson);
else return query(x,rson);
}
int main()
{
int T,n,cas=;
init();
build(,N,);
T=read();
while(T--)
{
n=read();
LL ans=;
for(int i=;i<=n;i++)
{
int x=read();
ans+=query(x,,N,);
}
printf("Case %d: %lld Xukha\n",cas++,ans);
}
}
loj1370(欧拉函数+线段树)的更多相关文章
- LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)
这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)
题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]
题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...
- CF1114F Please, another Queries on Array?(线段树,数论,欧拉函数,状态压缩)
这题我在考场上也是想出了正解的……但是没调出来. 题目链接:CF原网 题目大意:给一个长度为 $n$ 的序列 $a$,$q$ 个操作:区间乘 $x$,求区间乘积的欧拉函数模 $10^9+7$ 的值. ...
随机推荐
- java 一个函数EnumMap返回多个值
java 一个函数如何返回多个值 在开发过程中,经常会有这种情况,就是一个函数需要返回多个值,这是一个问题!! 网上这个问题的解决方法: 1.使用map返回值:这个方法问题是,你并不知道如何返回值 ...
- 强大的Http监控工具Fidder
软件下载:http://fiddler2.com/get-fiddler 软件学习:http://www.cnblogs.com/TankXiao/archive/2012/02/06/2337728 ...
- SEO分享:我为什么会有这么多的优质外链资源?
前面小浪发了一篇文章" [完整版]我是怎样3个月把800指数的词做上首页的.",非常多人看了之后都表示非常佩服.顽强的运行力.确实SEO就是要顽强的运行力,也有人说吹牛吧,一天50 ...
- EasyUI - Slider组件
效果: html代码: <input id="box" /> JS代码: $(function () { $('#box').slider({ width: ,//设置 ...
- linux命令:使用man, 导出man
要查一个命令怎么使用,使用"man 命令", eg: man find, man ls; "info 命令"貌似也可以看, info find, info ls ...
- linux: 可重入函数与不可重入函数
1. 可重入函数与线程安全 摘自 多线程和多进程的区别(小结) http://blog.csdn.net/hairetz/article/details/4281931 要确保函数线程安全,主要需要考 ...
- perl EXPORT模块
Exporter - Implements default import method for modules 实现模块的默认导出方法: 简介: [tomcat@wx03 ~]$ cat hui.pm ...
- 基于visual Studio2013解决C语言竞赛题之1060寻找回文数
题目 解决代码及点评 /* 60. 回文数指左右数字对称的数,如121,2112都是回文数.回文数猜想:取一任意十进制数,将其倒过来,并将这两个数相加, 然后把这个相加的和倒过来再与 ...
- hdu4708
Rotation Lock Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HBASE完全分布式模式的安装
1集群环境下hadoop.1.1.2已经安装成功 2配置hosts,及环境变量 3编辑hbase-env.xml 4编辑hbase-site.xml 5编辑regionservers文件 6把Hbas ...