轨道力学中二体问题下求解兰伯特方程。

老外写的Matlab程序,我把它转成了Fortran程序。

!*****************************************************************
    subroutine solve_lambert(r1,r2,tt,GM,lw,N,nBranch,v1,v2)
    implicit real(8)(A-H,O-Z)
    dimension r1(3),r2(3),v1(3),v2(3),tmp3(3),wih(3),r1p(3),r2p(3)
    external x2tof,fnorm
    !This routine implements a new algorithm that solves Lambert's problem. The
    !algorithm has two major characteristics that makes it favorable to other
    !existing ones.
    !
    !   1) It describes the generic orbit solution of the boundary condition
    !   problem through the variable X=log(1+cos(alpha/2)). By doing so the
    !   graphs of the time of flight become defined in the entire real axis and
    !   resembles a straight line. Convergence is granted within few iterations
    !   for all the possible geometries (except, of course, when the transfer
    !   angle is zero). When multiple revolutions are considered the variable is
    !   X=tan(cos(alpha/2)*pi/2).
    !
    !   2) Once the orbit has been determined in the plane, this routine
    !   evaluates the velocity vectors at the two points in a way that is not
    !   singular for the transfer angle approaching to pi (Lagrange coefficient
    !   based methods are numerically not well suited for this purpose).
    !
    !   As a result Lambert's problem is solved (with multiple revolutions
    !   being accounted for) with the same computational effort for all
    !   possible geometries. The case of near 180 transfers is also solved
    !   efficiently.
    !
    !   We note here that even when the transfer angle is exactly equal to pi
    !   the algorithm does solve the problem in the plane (it finds X), but it
    !   is not able to evaluate the plane in which the orbit lies. A solution
    !   to this would be to provide the direction of the plane containing the
    !   transfer orbit from outside. This has not been implemented in this
    !   routine since such a direction would depend on which application the
    !   transfer is going to be used in.
    !
    !Usage: [v1,v2,a,p,theta,iter]=lambertI(r1,r2,t,GM,lw,N,nBranch)
    !
    !Inputs:
    !           r1=Position vector at departure (column,km)
    !           r2=Position vector at arrival (column, same units as r1,km)
    !           t=Transfer time (scalar,s)
    !           GM=gravitational parameter (scalar, units have to be
    !           consistent with r1,t units,km^3/s^2)
    !           lw=1 if long way is chosen
    !           nBranch='1' if the left nBranch is selected in a problem where N
    !           is not 0 (multirevolution)
    !    天体运行是由分支.所以nBranch一般选择0
    !           N=number of revolutions
    !
    !      说明:当N~=0时,旋转方向不光用lw来控制还要先用nBranch来控制.
    !Outputs:
    !           v1=Velocity at departure        (consistent units)(km/s)
    !           v2=Velocity at arrival              (km/s)

    !           iter=number of iteration made by the newton solver (usually 6)
    !
    !    当需要时可以加上.
    !补充说明:
    !                [v1,v2,a,p,theta,iter]=lambertI(r1,r2,t,GM,lw,N,nBranch)

    !nBranch=1!here 1 is represent left
    !Preliminary control on the function call
    pi = 3.141592653589793D0

    if (tt<=0) then
        v1=1/0D0
        v2=1/0D0
        return
    end if

    tol=1D-11  !Increasing the tolerance does not bring any advantage as the
    !precision is usually greater anyway (due to the rectification of the tof
    !graph) except near particular cases such as parabolas in which cases a
    !lower precision allow for usual convergence.

    !Non dimensional units
    R=sqrt(r1(1)**2+r1(2)**2+r1(3)**2)
    V=sqrt(GM/R)
    T=R/V

    !working with non-dimensional radii and time-of-flight
    r1p=r1/R
    r2p=r2/R
    t=tt/T

    !Evaluation of the relevant geometry parameters in non dimensional units
    r2mod=sqrt(r2p(1)**2+r2p(2)**2+r2p(3)**2)
    theta=acos((r1p(1)*r2p(1)+r1p(2)*r2p(2)+r1p(3)*r2p(3))/r2mod)
    !close to pi and the acos function could return complex numbers

    !计算夹角,并确定是大弧还是小弧.
    if (lw>=1) theta=2*pi-theta

    c=sqrt(1D0+r2mod**2-2D0*r2mod*cos(theta)) !non dimensional chord
    s=(1D0+r2mod+c)/2D0                      !non dimensional semi-perimeter
    am=s/2D0                               !minimum energy ellipse semi major axis
    wlambda=sqrt(r2mod)*cos(theta/2D0)/s    !lambda parameter defined in BATTIN's book

    !We start finding the log(x+1) value of the solution conic:
    !!NO MULTI REV --> (1 SOL)
    if (N==0) then
        winn1=-0.5233D0    !first guess point
        winn2=0.5233D0     !second guess point
        x1=log(1D0+winn1)
        x2=log(1D0+winn2)
        y1=log(x2tof(winn1*1D0,s,c,lw,N))-log(t)
        y2=log(x2tof(winn2*1D0,s,c,lw,N))-log(t)

        !Newton iterations
        err=1
        i=0
        do while ((err>tol) .and. (y1/=y2))
            i=i+1
            xnew=(x1*y2-y1*x2)/(y2-y1)
            ynew=log(x2tof(exp(xnew)-1,s,c,lw,N))-log(t)
            x1=x2
            y1=y2
            x2=xnew
            y2=ynew
            err=abs(x1-xnew)
        end do
        iter=i
        x=exp(xnew)-1

        !!MULTI REV --> (2 SOL) SEPARATING RIGHT AND LEFT BRANCH
    else
        if (nBranch==1) then
            winn1=-0.5234D0
            winn2=-0.2234D0
        else
            winn1=0.2D0
            winn2=0.5234D0
        end if
        x1=tan(winn1*pi/2)
        x2=tan(winn2*pi/2)
        y1=x2tof(winn1,s,c,lw,N)-t

        y2=x2tof(winn2,s,c,lw,N)-t
        err=1
        i=0

        !Newton Iteration
        do while ((err>tol) .and. (i<90) .and. (y1/=y2))
            i=i+1
            xnew=(x1*y2-y1*x2)/(y2-y1)
            ynew=x2tof(atan(xnew)*2/pi,s,c,lw,N)-t
            x1=x2
            y1=y2
            x2=xnew
            y2=ynew
            err=abs(x1-xnew)
        end do
        x=atan(xnew)*2/pi
        iter=i
    end if

    !The solution has been evaluated in terms of log(x+1) or tan(x*pi/2), we
    !now need the conic. As for transfer angles near to pi the lagrange
    !coefficient technique goes singular (dg approaches a zero/zero that is
    !numerically bad) we here use a different technique for those cases. When
    !the transfer angle is exactly equal to pi, then the wih unit vector is not
    !determined. The remaining equations, though, are still valid.

    a=am/(1-x**2)                       !solution semimajor axis
    !calcolo psi
    if (x<1D0) then !ellisse
        beta=2D0*asin(sqrt((s-c)/2D0/a))
        if (lw>=1) beta=-beta

        alfa=2D0*acos(x)
        psi=(alfa-beta)/2D0
        eta2=2*a*sin(psi)**2/s
        eta=sqrt(eta2)
    else !iperbole
        beta=2*asinh(sqrt((c-s)/2/a))
        if (lw>=1) beta=-beta

        alfa=2*acosh(x)
        psi=(alfa-beta)/2
        eta2=-2*a*sinh(psi)**2/s
        eta=sqrt(eta2)
    end if
    p=r2mod/am/eta2*sin(theta/2)**2     !parameter of the solution
    sigma1=1/eta/sqrt(am)*(2*wlambda*am-(wlambda+x*eta))
    call cross(r1p,r2p,tmp3)
    wih=tmp3/fnorm(tmp3,3)
    if (lw>=1) wih=-wih

    vr1 = sigma1
    vt1 = sqrt(p)
    call cross(wih,r1p,tmp3)
    v1  = vr1 * r1p   +   vt1 * tmp3

    vt2=vt1/r2mod
    vr2=-vr1+(vt1-vt2)/tan(theta/2)
    call cross(wih,r2p/r2mod,tmp3)
    v2=vr2*r2p/r2mod+vt2*tmp3

    v1=v1*V
    v2=v2*V
    if (err>tol) then
        v1=(/100D0,100D0,100D0/)
        v2=(/100D0,100D0,100D0/)
    end if
    end subroutine
!*****************************************************************
    real(8) function x2tof(x,s,c,lw,N)
    implicit real(8)(A-H,O-Z)
    external tofabn
    !Subfunction that evaluates the time of flight as a function of x
    am=s/2D0
    a=am/(1D0-x**2)
    if (x<1D0) then
        beta=2D0*asin(sqrt((s-c)/2D0/a))
        if (lw>=1) beta=-beta
        alfa=2*acos(x)
    else   !!IPERBOLE
        alfa=2*acosh(x)
        beta=2*asinh(sqrt((s-c)/(-2D0*a)))
        if (lw>=1) beta=-beta
    end if
    x2tof=tofabn(a,alfa,beta,N)
    end function
!*****************************************************************
    real(8) function tofabn(sigma,alfa,beta,N)
    implicit real(8)(A-H,O-Z)
    !subfunction that evaluates the time of flight via Lagrange expression
    pi = 3.141592653589793D0
    if (sigma>0D0) then
        tofabn=sigma*sqrt(sigma)*((alfa-sin(alfa))-(beta-sin(beta))+N*2D0*pi)
    else
        tofabn=-sigma*sqrt(-sigma)*((sinh(alfa)-alfa)-(sinh(beta)-beta))
    end if
    end function
!*****************************************************************
    subroutine cross(A,B,C)
    implicit none
    real(8) :: A(3),B(3),C(3)
!----------------------------------------------------------------
!   **计算矢量A(三维)与B的叉乘,C为返回的矢量**
!----------------------------------------------------------------
    C(1)=A(2)*B(3)-A(3)*B(2)
    C(2)=A(3)*B(1)-A(1)*B(3)
    C(3)=A(1)*B(2)-A(2)*B(1)
    end subroutine
!*****************************************************************
    real(8) function fnorm(X,N)
    implicit none
    integer(4) :: N
    real(8) :: X(N)
!----------------------------------------------------------------
!   求数组X的二范数
!----------------------------------------------------------------
    fnorm = sqrt(dot_product(X(1:N),X(1:N)))
    return
    end function
!*****************************************************************

求解轨道力学二体意义下的Lambert方程(兰伯特方程)的Fortran程序的更多相关文章

  1. 李雅普诺夫函数 LyapunovFunction 李雅普诺夫意义下的稳定性

    https://zh.wikipedia.org/zh-hans/李亞普諾夫函數 李雅普诺夫函数(Lyapunov function)是用来证明一动力系统或自治微分方程稳定性的函数.其名称来自俄罗斯数 ...

  2. coreseek实战(二):windows下mysql数据源部分配置说明

    coreseek实战(二):windows下mysql数据源部分配置说明 关于coreseek在windows使用mysql数据源的配置,以及中文分词的详细说明,请参考官方文档: mysql数据源配置 ...

  3. HDU - 5755:Gambler Bo (开关问题,%3意义下的高斯消元)

    pro:给定N*M的矩阵,每次操作一个位置,它会增加2,周围4个位置会增加1.给定初始状态,求一种方案,使得最后的数都为0:(%3意义下. sol:(N*M)^3的复杂度的居然过了.          ...

  4. SAAS云平台搭建札记: (二) Linux Ubutu下.Net Core整套运行环境的搭建

    最近做的项目,由于预算有限,公司决定不采购Windows服务器,而采购基于Linux的服务器. 一般的VPS服务器,如果使用Windows系统,那么Windows Server2012\2016安装好 ...

  5. HDU 5627 Clarke and MST &意义下最大生成树 贪心

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5627 题意:Bestcoder的一道题,让你求&意义下的最大生成树. 解法: 贪心,我们从高位 ...

  6. 2019牛客暑期多校训练营(第九场)B:Quadratic equation (二次剩余求mod意义下二元一次方程)

    题意:给定p=1e9+7,A,B.  求一对X,Y,满足(X+Y)%P=A; 且(X*Y)%P=B: 思路:即,X^2-BX+CΞ0;  那么X=[B+-sqrt(B^2-4C)]/2: 全部部分都要 ...

  7. hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】

    题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...

  8. 模意义下的FFT算法

    //写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记 令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT.定义两个长度为N的实序 ...

  9. Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)

    链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...

随机推荐

  1. iOS学习 plist读取和写入文件

    干iOS开发时间.后经常用来plist文件,  那plist什么文件是它? 它的全称是:Property List.属性列表文件.它是一种用来存储串行化后的对象的文件.属性列表文件的扩展名为.plis ...

  2. nyoj 破门锁(水题)

    Time Limit: 1000ms Memory Limit: 128000KB 64-bit integer IO format:      Java class name: Submit Sta ...

  3. android activity 后的形式 藏

    activity 希望的形式 于AndroidManifest.xml  建立 theme 属性 <activity             android:name="zicox.u ...

  4. POJ 3013 Big Christmas Tree(最短Dijkstra+优先级队列优化,SPFA)

    POJ 3013 Big Christmas Tree(最短路Dijkstra+优先队列优化,SPFA) ACM 题目地址:POJ 3013 题意:  圣诞树是由n个节点和e个边构成的,点编号1-n. ...

  5. hdu More is better

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1856 题意:王老师要找一些男生帮助他完成一项工程.要求最后挑选出的男生之间都是朋友关系,可以说直接的, ...

  6. 多校训练赛2 ZCC loves cards

    ZCC loves cards Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  7. auto tool: make -2014-1210-0001

    /* *Author : DavidLin *Date : 2014-12-10pm *Email : linpeng1577@163.com or linpeng1577@gmail.com *wo ...

  8. 左右JAVA示例代码事件分发和监督机制来实现-绝对原创有用

    文章标题:左右JAVA示例代码事件分发和监督机制来实现 文章地址: http://blog.csdn.net/5iasp/article/details/37054171 作者: javaboy201 ...

  9. DYNAMICRESOLUTION | NODYNAMICRESOLUTION

    有时候开启OGG进程的时候较慢,可能是由于须要同步的表太多,OGG在开启进程之前会将须要同步的表建立一个记录而且存入到磁盘中,这样就须要耗费大量的时间.OGG同一时候也提供了DYNAMICRESOLU ...

  10. UVA11627-Slalom(二分法)

    题目链接 题意:有n个宽为w的旗门,第i个旗门左端的坐标为(xi, yi),对于全部1 <= i < n满足yi < y(i+1).你有s双滑雪板,第j双的速度为sj(垂直向下的速度 ...