求解轨道力学二体意义下的Lambert方程(兰伯特方程)的Fortran程序
轨道力学中二体问题下求解兰伯特方程。
老外写的Matlab程序,我把它转成了Fortran程序。
!***************************************************************** subroutine solve_lambert(r1,r2,tt,GM,lw,N,nBranch,v1,v2) implicit real(8)(A-H,O-Z) dimension r1(3),r2(3),v1(3),v2(3),tmp3(3),wih(3),r1p(3),r2p(3) external x2tof,fnorm !This routine implements a new algorithm that solves Lambert's problem. The !algorithm has two major characteristics that makes it favorable to other !existing ones. ! ! 1) It describes the generic orbit solution of the boundary condition ! problem through the variable X=log(1+cos(alpha/2)). By doing so the ! graphs of the time of flight become defined in the entire real axis and ! resembles a straight line. Convergence is granted within few iterations ! for all the possible geometries (except, of course, when the transfer ! angle is zero). When multiple revolutions are considered the variable is ! X=tan(cos(alpha/2)*pi/2). ! ! 2) Once the orbit has been determined in the plane, this routine ! evaluates the velocity vectors at the two points in a way that is not ! singular for the transfer angle approaching to pi (Lagrange coefficient ! based methods are numerically not well suited for this purpose). ! ! As a result Lambert's problem is solved (with multiple revolutions ! being accounted for) with the same computational effort for all ! possible geometries. The case of near 180 transfers is also solved ! efficiently. ! ! We note here that even when the transfer angle is exactly equal to pi ! the algorithm does solve the problem in the plane (it finds X), but it ! is not able to evaluate the plane in which the orbit lies. A solution ! to this would be to provide the direction of the plane containing the ! transfer orbit from outside. This has not been implemented in this ! routine since such a direction would depend on which application the ! transfer is going to be used in. ! !Usage: [v1,v2,a,p,theta,iter]=lambertI(r1,r2,t,GM,lw,N,nBranch) ! !Inputs: ! r1=Position vector at departure (column,km) ! r2=Position vector at arrival (column, same units as r1,km) ! t=Transfer time (scalar,s) ! GM=gravitational parameter (scalar, units have to be ! consistent with r1,t units,km^3/s^2) ! lw=1 if long way is chosen ! nBranch='1' if the left nBranch is selected in a problem where N ! is not 0 (multirevolution) ! 天体运行是由分支.所以nBranch一般选择0 ! N=number of revolutions ! ! 说明:当N~=0时,旋转方向不光用lw来控制还要先用nBranch来控制. !Outputs: ! v1=Velocity at departure (consistent units)(km/s) ! v2=Velocity at arrival (km/s) ! iter=number of iteration made by the newton solver (usually 6) ! ! 当需要时可以加上. !补充说明: ! [v1,v2,a,p,theta,iter]=lambertI(r1,r2,t,GM,lw,N,nBranch) !nBranch=1!here 1 is represent left !Preliminary control on the function call pi = 3.141592653589793D0 if (tt<=0) then v1=1/0D0 v2=1/0D0 return end if tol=1D-11 !Increasing the tolerance does not bring any advantage as the !precision is usually greater anyway (due to the rectification of the tof !graph) except near particular cases such as parabolas in which cases a !lower precision allow for usual convergence. !Non dimensional units R=sqrt(r1(1)**2+r1(2)**2+r1(3)**2) V=sqrt(GM/R) T=R/V !working with non-dimensional radii and time-of-flight r1p=r1/R r2p=r2/R t=tt/T !Evaluation of the relevant geometry parameters in non dimensional units r2mod=sqrt(r2p(1)**2+r2p(2)**2+r2p(3)**2) theta=acos((r1p(1)*r2p(1)+r1p(2)*r2p(2)+r1p(3)*r2p(3))/r2mod) !close to pi and the acos function could return complex numbers !计算夹角,并确定是大弧还是小弧. if (lw>=1) theta=2*pi-theta c=sqrt(1D0+r2mod**2-2D0*r2mod*cos(theta)) !non dimensional chord s=(1D0+r2mod+c)/2D0 !non dimensional semi-perimeter am=s/2D0 !minimum energy ellipse semi major axis wlambda=sqrt(r2mod)*cos(theta/2D0)/s !lambda parameter defined in BATTIN's book !We start finding the log(x+1) value of the solution conic: !!NO MULTI REV --> (1 SOL) if (N==0) then winn1=-0.5233D0 !first guess point winn2=0.5233D0 !second guess point x1=log(1D0+winn1) x2=log(1D0+winn2) y1=log(x2tof(winn1*1D0,s,c,lw,N))-log(t) y2=log(x2tof(winn2*1D0,s,c,lw,N))-log(t) !Newton iterations err=1 i=0 do while ((err>tol) .and. (y1/=y2)) i=i+1 xnew=(x1*y2-y1*x2)/(y2-y1) ynew=log(x2tof(exp(xnew)-1,s,c,lw,N))-log(t) x1=x2 y1=y2 x2=xnew y2=ynew err=abs(x1-xnew) end do iter=i x=exp(xnew)-1 !!MULTI REV --> (2 SOL) SEPARATING RIGHT AND LEFT BRANCH else if (nBranch==1) then winn1=-0.5234D0 winn2=-0.2234D0 else winn1=0.2D0 winn2=0.5234D0 end if x1=tan(winn1*pi/2) x2=tan(winn2*pi/2) y1=x2tof(winn1,s,c,lw,N)-t y2=x2tof(winn2,s,c,lw,N)-t err=1 i=0 !Newton Iteration do while ((err>tol) .and. (i<90) .and. (y1/=y2)) i=i+1 xnew=(x1*y2-y1*x2)/(y2-y1) ynew=x2tof(atan(xnew)*2/pi,s,c,lw,N)-t x1=x2 y1=y2 x2=xnew y2=ynew err=abs(x1-xnew) end do x=atan(xnew)*2/pi iter=i end if !The solution has been evaluated in terms of log(x+1) or tan(x*pi/2), we !now need the conic. As for transfer angles near to pi the lagrange !coefficient technique goes singular (dg approaches a zero/zero that is !numerically bad) we here use a different technique for those cases. When !the transfer angle is exactly equal to pi, then the wih unit vector is not !determined. The remaining equations, though, are still valid. a=am/(1-x**2) !solution semimajor axis !calcolo psi if (x<1D0) then !ellisse beta=2D0*asin(sqrt((s-c)/2D0/a)) if (lw>=1) beta=-beta alfa=2D0*acos(x) psi=(alfa-beta)/2D0 eta2=2*a*sin(psi)**2/s eta=sqrt(eta2) else !iperbole beta=2*asinh(sqrt((c-s)/2/a)) if (lw>=1) beta=-beta alfa=2*acosh(x) psi=(alfa-beta)/2 eta2=-2*a*sinh(psi)**2/s eta=sqrt(eta2) end if p=r2mod/am/eta2*sin(theta/2)**2 !parameter of the solution sigma1=1/eta/sqrt(am)*(2*wlambda*am-(wlambda+x*eta)) call cross(r1p,r2p,tmp3) wih=tmp3/fnorm(tmp3,3) if (lw>=1) wih=-wih vr1 = sigma1 vt1 = sqrt(p) call cross(wih,r1p,tmp3) v1 = vr1 * r1p + vt1 * tmp3 vt2=vt1/r2mod vr2=-vr1+(vt1-vt2)/tan(theta/2) call cross(wih,r2p/r2mod,tmp3) v2=vr2*r2p/r2mod+vt2*tmp3 v1=v1*V v2=v2*V if (err>tol) then v1=(/100D0,100D0,100D0/) v2=(/100D0,100D0,100D0/) end if end subroutine !***************************************************************** real(8) function x2tof(x,s,c,lw,N) implicit real(8)(A-H,O-Z) external tofabn !Subfunction that evaluates the time of flight as a function of x am=s/2D0 a=am/(1D0-x**2) if (x<1D0) then beta=2D0*asin(sqrt((s-c)/2D0/a)) if (lw>=1) beta=-beta alfa=2*acos(x) else !!IPERBOLE alfa=2*acosh(x) beta=2*asinh(sqrt((s-c)/(-2D0*a))) if (lw>=1) beta=-beta end if x2tof=tofabn(a,alfa,beta,N) end function !***************************************************************** real(8) function tofabn(sigma,alfa,beta,N) implicit real(8)(A-H,O-Z) !subfunction that evaluates the time of flight via Lagrange expression pi = 3.141592653589793D0 if (sigma>0D0) then tofabn=sigma*sqrt(sigma)*((alfa-sin(alfa))-(beta-sin(beta))+N*2D0*pi) else tofabn=-sigma*sqrt(-sigma)*((sinh(alfa)-alfa)-(sinh(beta)-beta)) end if end function !***************************************************************** subroutine cross(A,B,C) implicit none real(8) :: A(3),B(3),C(3) !---------------------------------------------------------------- ! **计算矢量A(三维)与B的叉乘,C为返回的矢量** !---------------------------------------------------------------- C(1)=A(2)*B(3)-A(3)*B(2) C(2)=A(3)*B(1)-A(1)*B(3) C(3)=A(1)*B(2)-A(2)*B(1) end subroutine !***************************************************************** real(8) function fnorm(X,N) implicit none integer(4) :: N real(8) :: X(N) !---------------------------------------------------------------- ! 求数组X的二范数 !---------------------------------------------------------------- fnorm = sqrt(dot_product(X(1:N),X(1:N))) return end function !*****************************************************************
求解轨道力学二体意义下的Lambert方程(兰伯特方程)的Fortran程序的更多相关文章
- 李雅普诺夫函数 LyapunovFunction 李雅普诺夫意义下的稳定性
https://zh.wikipedia.org/zh-hans/李亞普諾夫函數 李雅普诺夫函数(Lyapunov function)是用来证明一动力系统或自治微分方程稳定性的函数.其名称来自俄罗斯数 ...
- coreseek实战(二):windows下mysql数据源部分配置说明
coreseek实战(二):windows下mysql数据源部分配置说明 关于coreseek在windows使用mysql数据源的配置,以及中文分词的详细说明,请参考官方文档: mysql数据源配置 ...
- HDU - 5755:Gambler Bo (开关问题,%3意义下的高斯消元)
pro:给定N*M的矩阵,每次操作一个位置,它会增加2,周围4个位置会增加1.给定初始状态,求一种方案,使得最后的数都为0:(%3意义下. sol:(N*M)^3的复杂度的居然过了. ...
- SAAS云平台搭建札记: (二) Linux Ubutu下.Net Core整套运行环境的搭建
最近做的项目,由于预算有限,公司决定不采购Windows服务器,而采购基于Linux的服务器. 一般的VPS服务器,如果使用Windows系统,那么Windows Server2012\2016安装好 ...
- HDU 5627 Clarke and MST &意义下最大生成树 贪心
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5627 题意:Bestcoder的一道题,让你求&意义下的最大生成树. 解法: 贪心,我们从高位 ...
- 2019牛客暑期多校训练营(第九场)B:Quadratic equation (二次剩余求mod意义下二元一次方程)
题意:给定p=1e9+7,A,B. 求一对X,Y,满足(X+Y)%P=A; 且(X*Y)%P=B: 思路:即,X^2-BX+CΞ0; 那么X=[B+-sqrt(B^2-4C)]/2: 全部部分都要 ...
- hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】
题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...
- 模意义下的FFT算法
//写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记 令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT.定义两个长度为N的实序 ...
- Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)
链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...
随机推荐
- asp.net学习之SqlDataSource
原文:asp.net学习之SqlDataSource 通过 SqlDataSource 控件,可以使用 Web 服务器控件访问位于关系数据库中的数据.其中可以包括 Microsoft SQL Serv ...
- 汉高澳大利亚sinox接口捆绑经典winxp,全面支持unicode跨语言处理
用qtconfig(或者qtconfig-qt4)设置字体后,汉澳sinox视窗界面以跟winxp媲美的界面出现,爽心悦目. 并且视窗使用非常稳定.非常少出现死机无响应现象,堪称完美. 引入unico ...
- 网络资源(2) - Maven视频
2014_08_23 http://v.youku.com/v_show/id_XNDE2NzM0Nzk2.html Maven最佳实践,公司真实环境实践-私服最佳实践 2014_08_24 http ...
- iOS,Android,.NET通用AES加密算法
原文:iOS,Android,.NET通用AES加密算法 这两天为移动App开发API,结果实现加密验证时碰到一大坑.这里不得不吐槽下又臭又硬的iOS,Windows Server无法解密出正确的结果 ...
- C#按LastID进行分页——与lambda形成链式
public static class PageHelper { /// <summary> /// 按页码分页 /// </summary> /// <param na ...
- java_tomcat_the_APR based Apache Tomcat 小喵咪死活启动报错_临时方案
报错信息如下: 信息: The APR based Apache Tomcat Native library which allows optimal performance in productio ...
- linux_ubuntu12.04 卸载和安装mysql、远程访问、not allowed
一: 安装mysql 卸载mysql 第一步 sudo apt-get autoremove --purge mysql-server-5.0 sudo apt-get remove mysql-se ...
- 赵雅智_Android编码规范
凝视 导入mycodetemplates.xml统一凝视样式 须要加凝视的地方 类凝视(必加) 方法凝视(必加) 块凝视主要是数据结构和算法的描写叙述(必加) 类成员变量和常量凝视(选择性加入) 单行 ...
- ResultSet 转为 List或者JavaBean
一.将ResultSet结果集转换为List,其中每条记录信息保存为Map放到List中,方法如下: public static List<Map<String, Object>&g ...
- 在线预览Excel
遇到的问题各种多 <system.web> <identity impersonate="true" userName="Administ ...