主题链接:

option=com_onlinejudge&Itemid=8&page=show_problem&problem=2869">点击打开链接

求给定的3维坐标的凸包的表面积

三维凸包裸题。。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
#define PR 1e-8
#define N 510
struct TPoint{
double x, y, z;
TPoint(){}
TPoint(double _x, double _y, double _z):x(_x), y(_y), z(_z){}
TPoint operator-(const TPoint p){return TPoint(x-p.x, y-p.y, z-p.z);}
TPoint operator*(const TPoint p){return TPoint(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);}
double operator^(const TPoint p){return x*p.x+y*p.y+z*p.z;}
};
struct fac{
int a, b, c;
bool ok;
};
struct T3dhull{
int n;
TPoint ply[N];
int trianglecnt;
fac tri[N];
int vis[N][N];
double dist(TPoint a){return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}
double area(TPoint a, TPoint b, TPoint c)
{ return dist((b-a)*(c-a));}
double volume(TPoint a, TPoint b, TPoint c, TPoint d)
{ return (b-a)*(c-a)^(d-a);}
double ptoplane(TPoint &p, fac &f)
{
TPoint m = ply[f.b] - ply[f.a], n = ply[f.c]-ply[f.a], t = p-ply[f.a];
return (m*n)^t;
}
void deal(int p, int a, int b){
int f = vis[a][b];
fac add;
if(tri[f].ok)
{
if((ptoplane(ply[p], tri[f])) > PR)
dfs(p, f);
else
{
add.a = b, add.b = a, add.c = p, add.ok = 1;
vis[p][b] = vis[a][p] = vis[b][a] = trianglecnt;
tri[trianglecnt++] = add;
}
}
}
void dfs(int p, int cnt) {
tri[cnt].ok = 0;
deal(p, tri[cnt].b, tri[cnt].a);
deal(p, tri[cnt].c, tri[cnt].b);
deal(p, tri[cnt].a, tri[cnt].c);
}
bool same(int s, int e) {
TPoint a = ply[tri[s].a], b = ply[tri[s].b], c = ply[tri[s].c];
return fabs(volume(a,b,c,ply[tri[e].a])) < PR
&& fabs(volume(a,b,c,ply[tri[e].b])) < PR
&& fabs(volume(a,b,c,ply[tri[e].c])) < PR;
}
void construct()
{
int i, j;
trianglecnt = 0;
if(n<4) return ;
bool tmp = true;
for(i = 1; i < n; i++)
{
if((dist(ply[0]-ply[i])) > PR)
{
swap(ply[1], ply[i]);
tmp = false;
break;
}
}
if(tmp)return ;
tmp = true;
for(i = 2; i < n; i++)
{
if((dist((ply[0]-ply[1])*(ply[1]-ply[i]))) > PR)
{
swap(ply[2], ply[i]);
tmp = false;
break;
}
}
if(tmp) return ;
tmp = true;
for(i = 3; i < n; i++)
{
if(fabs((ply[0]-ply[1])*(ply[1]-ply[2])^(ply[0]-ply[i]))>PR)
{
swap(ply[3], ply[i]);
tmp =false;
break;
}
}
if(tmp)return ;
fac add;
for(i = 0; i < 4; i++)
{
add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1;
if((ptoplane(ply[i], add))>0)
swap(add.b, add.c);
vis[add.a][add.b] = vis[add.b][add.c] = vis[add.c][add.a] = trianglecnt;
tri[trianglecnt++] = add;
}
for(i = 4; i < n; i++)
{
for(j = 0; j < trianglecnt; j++)
{
if(tri[j].ok && (ptoplane(ply[i], tri[j])) > PR)
{
dfs(i, j); break;
}
}
}
int cnt = trianglecnt;
trianglecnt = 0;
for(i = 0; i < cnt; i++)
{
if(tri[i].ok)
tri[trianglecnt++] = tri[i];
}
}
double area()
{
double ret = 0;
for(int i = 0; i < trianglecnt; i++)
ret += area(ply[tri[i].a], ply[tri[i].b], ply[tri[i].c]);
return ret/2.0;
}
double volume()
{
TPoint p(0,0,0);
double ret = 0;
for(int i = 0; i < trianglecnt; i++)
ret += volume(p, ply[tri[i].a], ply[tri[i].b], ply[tri[i].c]);
return fabs(ret/6);
}
}hull; int main(){
int Cas = 1;
while(scanf("%d",&hull.n), hull.n){
int i ;
for(i = 0; i < hull.n; i++)
scanf("%lf %lf %lf",&hull.ply[i].x, &hull.ply[i].y, &hull.ply[i].z);
hull.construct();
printf("Case %d: %.2lf\n", Cas++, hull.area());
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

UVA 11769 All Souls Night 的三维凸包要求的表面面积的更多相关文章

  1. POJ 2225 / ZOJ 1438 / UVA 1438 Asteroids --三维凸包,求多面体重心

    题意: 两个凸多面体,可以任意摆放,最多贴着,问他们重心的最短距离. 解法: 由于给出的是凸多面体,先构出两个三维凸包,再求其重心,求重心仿照求三角形重心的方式,然后再求两个多面体的重心到每个多面体的 ...

  2. hdu4273Rescue(三维凸包重心)

    链接 模板题已不叫题.. 三维凸包+凸包重心+点到平面距离(体积/点积)  体积-->混合积(先点乘再叉乘) #include <iostream> #include<cstd ...

  3. hdu4449Building Design(三维凸包+平面旋转)

    链接 看了几小时也没看懂代码表示的何意..无奈下来问问考研舍友. 还是考研舍友比较靠谱,分分钟解决了我的疑问. 可能三维的东西在纸面上真的不好表示,网上没有形象的题解,只有简单"明了&quo ...

  4. hdu 4273 2012长春赛区网络赛 三维凸包中心到最近面距离 ***

    新模板 /* HDU 4273 Rescue 给一个三维凸包,求重心到表面的最短距离 模板题:三维凸包+多边形重心+点面距离 */ #include<stdio.h> #include&l ...

  5. HDU 4573 Throw the Stones(动态三维凸包)(2013 ACM-ICPC长沙赛区全国邀请赛)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4573 Problem Description Remember our childhood? A fe ...

  6. bzoj 1209: [HNOI2004]最佳包裹 三维凸包

    1209: [HNOI2004]最佳包裹 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 160  Solved: 58[Submit][Status] ...

  7. bzoj 1964: hull 三维凸包 计算几何

    1964: hull 三维凸包 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 54  Solved: 39[Submit][Status][Discuss ...

  8. POJ 3528 求三维凸包表面积

    也是用模板直接套的题目诶 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include < ...

  9. BZOJ1209 [HNOI2004]最佳包裹 三维凸包 计算几何

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1209 题目概括 给出立体的n个点.求三维凸包面积. 题解 增量法,看了一天,还是没有完全懂. 上板 ...

随机推荐

  1. hdu1251(Trie树)

    传送门:统计难题 分析:Trie树入门题,随便写写练下手感,统计每个节点被多少单词经过就可以了. #include <iostream> #include <cstdio> # ...

  2. 对付"反盗链"

    对付"反盗链" 某些站点有所谓的反盗链设置,其实说穿了很简单, 就是检查你发送请求的header里面,referer站点是不是他自己, 所以我们只需要像把headers的refer ...

  3. Heritrix与Nutch对比

    Nutch 开发语言:Java http://lucene.apache.org/nutch/ 简介: Apache的子项目之一,属于Lucene项目下的子项目. Nutch是一个基于Lucene,类 ...

  4. SOLOWHEEL - 电动独轮车 - SOLOWHEEL俱乐部聚会活动火热报名中

    SOLOWHEEL - 电动独轮车 - SOLOWHEEL俱乐部聚会活动火热报名中 SOLOWHEEL俱乐部聚会活动火热报名中

  5. jquery关于表格隐藏和显示问题

    1. 关于指定表格指定列隐藏显示 $(":checkbox[name*=month]").each(function(){ if(!$(this).attr("check ...

  6. java文件创建、删除、读取、写入操作大全

    一.获得控制台用户输入的信息 public String getInputMessage() throws IOException...{ System.out.println("请输入您的 ...

  7. sql语句中 limi的用法

    SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset 使用查询语句时需要返回前几条或者中间的某几行数据时可以用到limit 例如 ...

  8. a标签中调用js的几种方法

    1. a href="javascript:js_method();" 这是我们平台上常用的方法,但是这种方法在传递this等参数的时候很容易出问题,而且javascript:协议 ...

  9. WPF换肤之七:异步

    原文:WPF换肤之七:异步 在WinForm时代,相信大家都遇到过这种情形,如果在程序设计过程中遇到了耗时的操作,不使用异步会导致程序假死.当然,在WPF中,这种情况也是存在的,所以我们就需要寻找一种 ...

  10. BIEE11g BI_server Jvm參数调整

    1.找到user_projects\domains\bifoundation_domain\bin文件夹 2.复制startWeblogic.sh为新的文件startAdminWeblogic.sh, ...