大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家分享的是MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法

  前段时间痞子衡写了一篇 《在IAR开发环境下将关键函数重定向到RAM中执行的三种方法》,有读者在文章下面留言,希望也讲一讲 MCUXpresso IDE 下函数重定向到 RAM 中执行的方法。我们知道函数重定向的实现需要借助 IDE 中链接器,不同 IDE 下虽然链接器原理差不多,但具体链接语法不太一样。MCUXpresso IDE 的底层工具链是 Arm GCC,所以今天的主题其实跟 Arm GCC 链接器语法及用法有关。

一、准备工作

  首先需要准备好环境,包含必要的软件,痞子衡的环境如下:

  • 集成开发环境: MCUXpresso IDE_11.4.0_6224,点此下载
  • 软件开发包: SDK_2.10.0_EVK-MIMXRT1170(Toolchain需包含MCUXpresso IDE),点此下载

  然后按照 《MCUXpresso IDE下SDK工程导入与workspace管理机制》 一文步骤从 SDK 包里导入生成一个工程(就选最简单的 hello_world 吧)。工程导入成功后,会在 \MCUXpressoIDE_11.4.0_6224\workspace\evkmimxrt1170_hello_world_demo_cm7 下看到 .project 工程文件,在 MCUXpresso IDE 下打开这个工程,然后调整工程设置 Memory 定义中顺序如下:

  现在我们再创建一个新源文件 critical_code.c 用于示例关键函数,将这个源文件添加进工程里,critical_code.c 文件中只有如下三个测试函数(它们在 main 函数里会被调用):

void critical_func1(uint32_t n)
{
PRINTF("Arg = %d .\r\n", n);
}
void critical_func2(uint32_t n)
{
PRINTF("Arg * 2 = %d .\r\n", 2 * n);
}
void critical_func3(uint32_t n)
{
PRINTF("Arg * 3 = %d .\r\n", 3 * n);
}

  编译链接修改后的工程,然后查看其映射文件(evkmimxrt1170_hello_world_demo_cm7.map)找到跟 critical_code.c 文件相关的内容如下,显然 critical_code.c 中的三个函数都会被链在 BOARD_FLASH 空间里(均在 .text 段里,函数体本身总大小为 52bytes)。

Linker script and memory map
LOAD ./source/critical_code.o
**************************************************************
.text 0x30002000 0x4f30
.text.critical_func1
0x300026dc 0x10 ./source/critical_code.o
0x300026dc critical_func1
.text.critical_func2
0x300026ec 0x10 ./source/critical_code.o
0x300026ec critical_func2
.text.critical_func3
0x300026fc 0x14 ./source/critical_code.o
0x300026fc critical_func3
.rodata.critical_func1.str1.4
0x30005ea4 0xd ./source/critical_code.o
*fill* 0x30005eb1 0x3 ff
.rodata.critical_func2.str1.4
0x30005eb4 0x11 ./source/critical_code.o
*fill* 0x30005ec5 0x3 ff
.rodata.critical_func3.str1.4
0x30005ec8 0x11 ./source/critical_code.o
*fill* 0x30005ed9 0x3 ff

二、重定向到RAM中方法

  我们现在要做的事就是将 critical_code.c 文件中的函数重定向到 RAM 里执行,原 MCUXpresso IDE 工程链接配置里指定的是 SRAM_DTC_cm7 空间来存放 readwrite 段,那我们就尝试将关键函数重定向到 SRAM_DTC_cm7 里(如需改到 SRAM_ITC_cm7、SRAM_OC1/2 等空间方法类似)。

2.1 __RAMFUNC() 修饰函数

  第一种方法是借助 MCUXpresso IDE 自带的头文件 cr_section_macros.h 里的宏。用 __RAMFUNC(RamAliasName) 宏来修饰函数定义。这种方法主要适用重定向单个关键函数,比如我们用它来修饰 critical_func1() 函数:

  • Note: __RAMFUNC() 仅重定向被修饰的函数体本身代码,而该函数中调用的其他函数体本身并不受影响
#include <cr_section_macros.h>

__RAMFUNC(RAM) void critical_func1(uint32_t n)
{
PRINTF("Arg = %d .\r\n", n);
}
void critical_func2(uint32_t n)
{
PRINTF("Arg * 2 = %d .\r\n", 2 * n);
}
void critical_func3(uint32_t n)
{
PRINTF("Arg * 3 = %d .\r\n", 3 * n);
}

  编译链接修改后的工程,然后查看其映射文件(evkmimxrt1170_hello_world_demo_cm7.map)找到跟 critical_code.c 文件相关的内容如下,此时 critical_func1() 已经被放到了 MCUXpresso IDE 内置的 .ramfunc.$RAM 段里,这个段是 MCUXpresso IDE 底层链接器专门用来收集重定向到 RAM 里的函数。

Linker script and memory map
LOAD ./source/critical_code.o
**************************************************************
.text 0x30002000 0x4f28
.text.critical_func2
0x300026dc 0x10 ./source/critical_code.o
0x300026dc critical_func2
.text.critical_func3
0x300026ec 0x14 ./source/critical_code.o
0x300026ec critical_func3
.rodata.str1.4
0x30005e9c 0xd ./source/critical_code.o
*fill* 0x30005ea9 0x3 ff
.rodata.critical_func2.str1.4
0x30005eac 0x11 ./source/critical_code.o
*fill* 0x30005ebd 0x3 ff
.rodata.critical_func3.str1.4
0x30005ec0 0x11 ./source/critical_code.o
*fill* 0x30005ed1 0x3 ff
**************************************************************
.data 0x20000000 0x54 load address 0x30006f28
*(SORT_BY_ALIGNMENT(.ramfunc*))
.ramfunc.$RAM 0x20000000 0x10 ./source/critical_code.o
0x20000000 critical_func1 // 变化处

2.2 自定义section指定函数

  第二种方法是借助 GNU C 里的 attribute 机制,即用 attribute((section("UserSectionName"))) 语法来修饰函数定义,将其放到自定义程序段里。比如我们将 critical_func1() 函数放到名为 criticalFunc 的自定义段里:

__attribute__((section("criticalFunc"))) void critical_func1(uint32_t n)
{
PRINTF("Arg = %d .\r\n", n);
}
void critical_func2(uint32_t n)
{
PRINTF("Arg * 2 = %d .\r\n", 2 * n);
}
void critical_func3(uint32_t n)
{
PRINTF("Arg * 3 = %d .\r\n", 3 * n);
}

  然后在 MCUXpresso IDE 链接配置设置界面 Extra linker script input sections 框里,将自定义程序段指定到具体 RAMx 里:

  编译链接修改后的工程,然后查看其映射文件(evkmimxrt1170_hello_world_demo_cm7.map)你会发现效果其实跟第一种方法是一模一样的,唯一的区别就是一个用 MCUXpresso IDE 内置的 .ramfunc.$RAM 段名,一个是用自定义段名 criticalFunc 而已。

Linker script and memory map
LOAD ./source/critical_code.o
**************************************************************
.text 0x30002000 0x4f28
.text.critical_func2
0x300026dc 0x10 ./source/critical_code.o
0x300026dc critical_func2
.text.critical_func3
0x300026ec 0x14 ./source/critical_code.o
0x300026ec critical_func3
.rodata.str1.4
0x30005e9c 0xd ./source/critical_code.o
*fill* 0x30005ea9 0x3 ff
.rodata.critical_func2.str1.4
0x30005eac 0x11 ./source/critical_code.o
*fill* 0x30005ebd 0x3 ff
.rodata.critical_func3.str1.4
0x30005ec0 0x11 ./source/critical_code.o
*fill* 0x30005ed1 0x3 ff
**************************************************************
.data 0x20000000 0x54 load address 0x30006f28
*(SORT_BY_ALIGNMENT(criticalFunc))
criticalFunc 0x20000038 0x10 ./source/critical_code.o // 变化处
0x20000038 critical_func1
criticalFunc.__stub
0x20000048 0x8 linker stubs

2.3 针对源文件中全部函数

  前两种重定向方法都适用单个关键函数(如果是多个关键函数,按方法逐一添加修饰当然也行),但如果某个源文件里函数特别多,并且我们希望将这个源文件里函数全部重定向到 RAM 里,有没有更便捷的方法呢?当然有!

  我们现在将 critical_code.c 文件里全部函数都重定向,首先需要在 MCUXpresso IDE 链接配置设置界面去掉 Manage linker script 选项的勾选,将自动生成的 evkmimxrt1170_hello_world_demo_cm7_Debug.ld 文件在同路径下拷贝一份重新命名,然后在 Linker script 路径里指定新的链接文件。

  打开链接文件 evkmimxrt1170_hello_world_demo_cm7_Debug_User.ld,在里面分别找到 Main .text/.data SECTION 执行域,将 critical_code.o 从 .text 中移除,并加进 .data 即可。

  编译链接修改后的工程,然后查看其映射文件(evkmimxrt1170_hello_world_demo_cm7.map)找到跟 critical_code.c 文件相关的内容如下,此时 critical_func1/2/3() 都链接在 RAM 里了。

Linker script and memory map
LOAD ./source/critical_code.o
**************************************************************
*(SORT_BY_ALIGNMENT(EXCLUDE_FILE(*critical_code.o) .text*))
.rodata.critical_func1.str1.4
0x30005e8c 0xd ./source/critical_code.o
*fill* 0x30005e99 0x3 ff
.rodata.critical_func2.str1.4
0x30005e9c 0x11 ./source/critical_code.o
*fill* 0x30005ead 0x3 ff
.rodata.critical_func3.str1.4
0x30005eb0 0x11 ./source/critical_code.o
*fill* 0x30005ec1 0x3 ff
**************************************************************
.data 0x20000000 0x7c load address 0x30006f18
*critical_code.o(SORT_BY_ALIGNMENT(.text.*))
.text.critical_func1
0x20000038 0x10 ./source/critical_code.o
0x20000038 critical_func1
.text.critical_func2
0x20000048 0x10 ./source/critical_code.o
0x20000048 critical_func2
.text.critical_func3
0x20000058 0x14 ./source/critical_code.o
0x20000058 critical_func3
*fill* 0x2000006c 0x4 ff
.text.critical_func3.__stub
0x20000070 0x8 linker stubs

三、启动文件中拷贝过程

  三种函数重定向方法都介绍完了,不知道你是否曾有过这样的疑问,这些关键函数机器码到底是什么时候怎么从 Flash 中拷贝到 RAM 里的?这要从工程启动文件 startup_mimxrt1176_cm7.c 谈起,在复位函数 ResetISR() 里有全部的 data/bss 等段初始化过程:

extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end; __attribute__ ((naked, section(".after_vectors.reset")))
void ResetISR(void) {
// Disable interrupts
__asm volatile ("cpsid i");
__asm volatile ("MSR MSP, %0" : : "r" (&_vStackTop) : ); #if defined (__USE_CMSIS)
// If __USE_CMSIS defined, then call CMSIS SystemInit code
SystemInit();
#endif // (__USE_CMSIS) // Copy the data sections from flash to SRAM.
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *SectionTableAddr; // Load base address of Global Section Table
SectionTableAddr = &__data_section_table; // Copy the data sections from flash to SRAM.
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
data_init(LoadAddr, ExeAddr, SectionLen);
} // At this point, SectionTableAddr = &__bss_section_table;
// Zero fill the bss segment
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
bss_init(ExeAddr, SectionLen);
} // Reenable interrupts
__asm volatile ("cpsie i"); #if defined (__REDLIB__)
// Call the Redlib library, which in turn calls main()
__main();
#endif while (1);
}

  至此,MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法痞子衡便介绍完毕了,掌声在哪里~~~

欢迎订阅

文章会同时发布到我的 博客园主页CSDN主页知乎主页微信公众号 平台上。

微信搜索"痞子衡嵌入式"或者扫描下面二维码,就可以在手机上第一时间看了哦。

痞子衡嵌入式:MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法的更多相关文章

  1. 痞子衡嵌入式:在MDK开发环境下将关键函数重定向到RAM中执行的几种方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在MDK开发环境下将关键函数重定向到RAM中执行的几种方法. 这个关键函数重定向到 RAM 中执行系列文章,痞子衡已经写过 <IA ...

  2. 痞子衡嵌入式:在IAR开发环境下将关键函数重定向到RAM中执行的三种方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在IAR开发环境下将关键函数重定向到RAM中执行的三种方法. 嵌入式项目里应用程序代码正常是放在 Flash 中执行的,但有时候也需要将 ...

  3. 痞子衡嵌入式:大话双核i.MXRT1170之在线联合调试双核工程的三种方法(IAR篇)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT1170下在线联合调试双核工程的方法(基于IAR). 前段时间痞子衡写过一篇<双核i.MXRT1170之单独在线调试从 ...

  4. 痞子衡嵌入式:深扒IAR启动函数流程之段初始化函数__iar_data_init3实现

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是IAR启动函数流程里的段初始化函数__iar_data_init3实现. 本篇是 <IAR启动函数流程及其__low_level_ ...

  5. 痞子衡嵌入式:超级下载算法(RT-UFL)开发笔记(1) - 执行在不同CM内核下

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是超级下载算法开发笔记(1)之执行在不同CM内核下. 文接上篇 <RT-UFL - 一个适用全平台i.MXRT的超级下载算法设计&g ...

  6. 痞子衡嵌入式:深扒IAR启动函数流程及其__low_level_init设计对函数重定向的影响

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是IAR启动函数流程及其__low_level_init设计对函数重定向的影响. 上一篇文章 <IAR下RT-Thread工程自定义 ...

  7. 痞子衡嵌入式:深扒IAR启动函数流程之段初始化实现中可用的压缩选项

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是IAR启动函数流程里段初始化实现中可用的压缩选项. 接着 <IAR启动函数流程之段初始化函数__iar_data_init3实现& ...

  8. 痞子衡嵌入式:在IAR开发环境下将整个源文件代码重定向到任意RAM中的方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在IAR开发环境下将整个源文件代码重定向到任意RAM中的方法. 痞子衡旧文 <在IAR下将关键函数重定向到RAM中执行的方法> ...

  9. 痞子衡嵌入式:在IAR开发环境下RT-Thread工程函数重定向失效分析

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在IAR开发环境下RT-Thread工程函数重定向失效分析. 痞子衡旧文 <在IAR下将关键函数重定向到RAM中执行的方法> ...

随机推荐

  1. DDD随谈

    前言 最近再次拜读了Eric的奠基之作[Domain-Driven Design –Tackling Complexity in the Heart of Software],还有Vernon的[In ...

  2. alpakka-kafka(6)-kafka应用案例,用户接口

    了解了kafka原理之后,对kafka的的应用场景有了一些想法.在下面的一系列讨论中把最近一个项目中关于kafka的应用介绍一下. 先介绍一下使用kafka的起因:任何进销存系统,销售开单部分都应该算 ...

  3. Cell Reports | 上海瑞金医院糜坚青等揭示组蛋白酰化/乙酰化修饰比率调控BRD4基因组分布

    ​ 景杰生物 | 报道 组蛋白翻译后修饰,被认为构成一类超越基因序列的"组蛋白密码",控制着遗传信息的组织层次及其在染色质层面的解读.组蛋白赖氨酸乙酰化是研究最早的一类组蛋白修饰, ...

  4. 学习Android Jetpack? 入门教程和进阶实战这里全都有!

    前言 2018年谷歌I/O,Jetpack横空出世,官方介绍如下: Jetpack 是一套库.工具和指南,可帮助开发者更轻松地编写优质应用.这些组件可帮助您遵循最佳做法.让您摆脱编写样板代码的工作并简 ...

  5. ES6与ES2015、ES2016以及ECMAScript的区别

    1. ECMAScript 和 JavaScript 的关系 ECMAScript 和 JavaScript 的关系是,前者是后者的规格,后者是前者的一种实现. javascript是netscape ...

  6. finalize() 方法——Java中垃圾回收提醒方法

    finalize() Java 允许定义这样的方法,它在对象被垃圾收集器析构(回收)之前调用,这个方法叫做 finalize( ),它用来清除回收对象. 例如,你可以使用 finalize() 来确保 ...

  7. .Net Core如何优雅的实现中间件

    在.Net Core的源码中,很多地方都有中间件的地方,Kestrel Server和Asp.net Core 等都用了中间件的设计,比如在Kestrel Server中,Http协议的1.0, 1. ...

  8. 跟我一起写 Makefile(二)

    三.make是如何工作的 在默认的方式下,也就是我们只输入make命令.那么, 1.make会在当前目录下找名字叫"Makefile"或"makefile"的文 ...

  9. MongoDB-01-基础

    mongodb逻辑结构 Mongodb 逻辑结构 MySQL逻辑结构 库 (database) 库 集合(collection) 表 文档(document) 数据行 安装部署 1 系统准备 1 这里 ...

  10. Mysql数据库优化(1)

    1.尽量不要留null select id from t where num is null,可以,但尽量不要留null,null也占空间:使用not null填充数据库,像varchar(100)这 ...