用Auto-TensorCore代码生成优化matmul

将演示如何使用TVM Auto TensorCore CodeGen在Volta/Turing GPU上编写高性能matmul调度。这是一个透明的解决方案,可以生成大多数在ir过程中完成的转换的tensorcore内核。用户还可以编写带有tensorize的调度来生成TensorCore代码。两个解决方案使用相同的tensorcore内部函数。有关详细信息,请参阅如何使用TensorCores优化卷积资料。              准备和算法

支持2种输入数据类型:float16和int8。对于float16,累加器为float32。对于int8,累加器为int32。对于数据布局,“N”表示无转置,“T”表示转置。

import logging

import sys

import numpy as np

import tvm

from tvm import te

from tvm import autotvm

from tvm.contrib import nvcc

def matmul_nn(A, B, L, dtype="float16", layout="NN"):

k = te.reduce_axis((0, L), name="k")

if dtype == "float16":

out_type = "float"

elif dtype == "int8":

out_type = "int"

elif dtype == "int4" or dtype == "int1":

out_type = "int"

if layout == "NN":

return te.compute(

(N, M), lambda i, j: te.sum(A[i, k].astype(out_type) * B[k, j].astype(out_type), axis=k)

)

if layout == "NT":

return te.compute(

(N, M), lambda i, j: te.sum(A[k, i].astype(out_type) * B[k, j].astype(out_type), axis=k)

)

if layout == "TN":

return te.compute(

(N, M), lambda i, j: te.sum(A[i, k].astype(out_type) * B[j, k].astype(out_type), axis=k)

)

if layout == "TT":

return te.compute(

(N, M), lambda i, j: te.sum(A[k, i].astype(out_type) * B[j, k].astype(out_type), axis=k)

)

Scheduling the Computation

这个调度和GPU上的非tensorcore matmul调度没有什么不同。有关优化matmul调度的基础知识,请参考How to optimize GEMM on CPU资料。当设置“tensor_core”pragma时,“rewrite for tensorcore”ir pass将自动转换tensorcore codegen的调度,否则将生成性能较低但功能相同的普通CUDA代码。

注意

TensorCore要求

请注意,在以下两种情况下,即使设置了“tensor_core”标注,TVM仍将返回到正常的CUDA codegen:(1)输入矩阵的m、n或k不是16的倍数;(2)CUDA9上的扭曲分片大小不是{16x16x16,32x8x16,8x32x16}中的一种。

在这个项目中,storage_align用于减少共享内存的库冲突。有关storage_align原语的用法,请参阅本文档。简言之,需要为一些共享内存缓冲区添加偏移量,以减少内存冲突。根据wmma doc,load_matrix_sync的步长必须是16字节的倍数,因此选择8作为float16的偏移量,16作为int8的偏移量。

使用AutoTVM搜索此计划中的最佳配置。

@autotvm.template("tutorial/auto_tensorcore/test_gemm")

def test_gemm(N, L, M, dtype, layout):

if layout == "NN":

shape_a = (N, L)

shape_b = (L, M)

elif layout == "NT":

shape_a = (L, N)

shape_b = (L, M)

elif layout == "TN":

shape_a = (N, L)

shape_b = (M, L)

elif layout == "TT":

shape_a = (L, N)

shape_b = (M, L)

else:

print("Unsupported layout:", layout)

sys.exit(1)

A = te.placeholder(shape_a, name="A", dtype=dtype)

B = te.placeholder(shape_b, name="B", dtype=dtype)

C = matmul_nn(A, B, L, dtype, layout)

s = te.create_schedule(C.op)

y, x = s[C].op.axis

k = s[C].op.reduce_axis[0]

# storage_align params

factor = 16

offset = 8

if dtype == "int8":

factor = 32

offset = 16

elif dtype == "int4":

factor = 64

offset = 32

elif dtype == "int1":

factor = 256

offset = 128

# create cache stages

AA = s.cache_read(A, "shared", [C])

if layout == "NN" or layout == "TN":

s[AA].storage_align(AA.op.axis[0], factor, offset)

AL = s.cache_read(AA, "local", [C])

BB = s.cache_read(B, "shared", [C])

if layout == "TT" or layout == "NT":

s[BB].storage_align(BB.op.axis[0], factor, offset)

BL = s.cache_read(BB, "local", [C])

CL = s.cache_write(C, "local")

# autotvm search space definition

cfg = autotvm.get_config()

cfg.define_knob("bx", [2, 4, 8])

cfg.define_knob("by", [8, 16, 32, 64])

cfg.define_knob("step_k", [1, 2, 4, 8, 16, 32])

cfg.define_knob("v", [4, 8, 16, 32])

by = cfg["by"].val

bx = cfg["bx"].val

step_k = cfg["step_k"].val

v = cfg["v"].val

# thread tile

TX = 8

TY = 1

if dtype == "int4" or dtype == "int1":

TX = 2

# warp tile

warp_tile_m = 16  # it could also be 8 or 32 on CUDA version >= 10.0

warp_tile_k = 16  # it must be 16 for fp16/int8 data type

if dtype == "int4":

warp_tile_m = 8

warp_tile_k = 32

elif dtype == "int1":

warp_tile_m = 8

warp_tile_k = 128

# block tile

tile_x = bx * TX

tile_y = by * TY

yo, ty = s[C].split(y, tile_y)

ty, yi = s[C].split(ty, TY)

# schedule for C stage

xo, xi = s[C].split(x, tile_x)

WX = min(warp_tile_m, tile_x)

tz, xi = s[C].split(xi, WX)

tx, xi = s[C].split(xi, TX)

s[C].reorder(yo, xo, tz, ty, tx, yi, xi)

s[C].bind(yo, te.thread_axis("blockIdx.y"))

s[C].bind(xo, te.thread_axis("blockIdx.x"))

s[C].bind(ty, te.thread_axis("threadIdx.y"))

s[C].bind(tz, te.thread_axis("threadIdx.z"))

s[C].bind(tx, te.thread_axis("threadIdx.x"))

# schedule for CL stage

ko, ki = s[CL].split(k, step_k * warp_tile_k)

kl, ki = s[CL].split(ki, warp_tile_k)

s[CL].compute_at(s[C], tx)

yo, xo = CL.op.axis

s[CL].reorder(ko, kl, ki, yo, xo)

# schedule for AA stage

s[AA].compute_at(s[CL], ko)

xo, xi = s[AA].split(s[AA].op.axis[1], factor=bx * v)

tz, tx = s[AA].split(xi, factor=(WX // TX) * v)

tx, vec = s[AA].split(tx, factor=v)

fused = s[AA].fuse(s[AA].op.axis[0], xo)

_, ty = s[AA].split(fused, factor=by)

s[AA].bind(ty, te.thread_axis("threadIdx.y"))

s[AA].bind(tz, te.thread_axis("threadIdx.z"))

s[AA].bind(tx, te.thread_axis("threadIdx.x"))

# vectorization is very important for float16/int8 inputs

s[AA].vectorize(vec)

# schedule for BB stage

s[BB].compute_at(s[CL], ko)

xo, xi = s[BB].split(s[BB].op.axis[1], factor=bx * v)

tz, tx = s[BB].split(xi, factor=(WX // TX) * v)

tx, vec = s[BB].split(tx, factor=v)

fused = s[BB].fuse(s[BB].op.axis[0], xo)

_, ty = s[BB].split(fused, factor=by)

s[BB].bind(ty, te.thread_axis("threadIdx.y"))

s[BB].bind(tz, te.thread_axis("threadIdx.z"))

s[BB].bind(tx, te.thread_axis("threadIdx.x"))

s[BB].vectorize(vec)

s[AL].compute_at(s[CL], kl)

s[BL].compute_at(s[CL], kl)

# set the 'tensor_core' pragma for tensorcore codegen

s[CL].pragma(ko, "tensor_core")

return s, [A, B, C]

AutoTune and Test

最后,使用一个调谐器来调整调度,生成具有最佳配置的代码,并运行内核与numpy进行比较,以检查结果是否正确。

# check whether the gpu has tensorcore

if not tvm.gpu(0).exist or not tvm.runtime.enabled("cuda"):

raise Exception("skip building this tutorial because cuda is not enabled..")

ctx = tvm.gpu()

if not nvcc.have_tensorcore(ctx.compute_version):

raise Exception("the gpu has no tensorcore, skipping...")

M, N, L = 512, 32, 512

dtype = "float16"

layout = "NN"

if len(sys.argv) >= 4:

M, N, L = int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3])

if len(sys.argv) >= 5:

dtype = sys.argv[4]

if len(sys.argv) >= 6:

layout = sys.argv[5]

# check whether current gpu arch support support current dtype's wmma codegen

cuda_compute_capability = tvm.runtime._ffi_api.GetDeviceAttr(2, 0, 4)

major, minor = nvcc.parse_compute_version(cuda_compute_capability)

if dtype == "int8":

assert major == 7 and minor >= 2

elif dtype == "int4" or dtype == "int1":

# int4/int1 only support layout TN

assert major == 7 and minor == 5 and layout == "TN"

def tune_and_evaluate(M, N, L, dtype, layout):

task = autotvm.task.create(

"tutorial/auto_tensorcore/test_gemm", args=(N, L, M, dtype, layout), target="cuda"

)

print(task.config_space)

logging.getLogger("autotvm").setLevel(logging.DEBUG)

logging.getLogger("autotvm").addHandler(logging.StreamHandler(sys.stdout))

measure_option = autotvm.measure_option(builder="local", runner=autotvm.LocalRunner(number=5))

tuner = autotvm.tuner.XGBTuner(task)

tuner.tune(

n_trial=1000,

measure_option=measure_option,

callbacks=[autotvm.callback.log_to_file("matmul.log")],

)

dispatch_context = autotvm.apply_history_best("matmul.log")

best_config = dispatch_context.query(task.target, task.workload)

print("\nBest config:")

print(best_config)

with autotvm.apply_history_best("matmul.log"):

with tvm.target.Target("cuda"):

s, arg_bufs = test_gemm(N, L, M, dtype, layout)

print(tvm.lower(s, arg_bufs, simple_mode=True))

func = tvm.build(s, arg_bufs)

dev_module = func.imported_modules[0]

print(dev_module.get_source())

# check correctness

if layout == "NN":

shape_a = (N, L)

shape_b = (L, M)

elif layout == "NT":

shape_a = (L, N)

shape_b = (L, M)

elif layout == "TN":

shape_a = (N, L)

shape_b = (M, L)

elif layout == "TT":

shape_a = (L, N)

shape_b = (M, L)

a_np = None

b_np = None

c_np = None

c_np_type = None

if dtype == "float16":

c_np_type = np.float32

a_np = np.random.uniform(size=shape_a).astype(np.float16)

b_np = np.random.uniform(size=shape_b).astype(np.float16)

if layout == "NN":

c_np = np.dot(a_np, b_np)

elif layout == "NT":

c_np = np.dot(a_np.T, b_np)

elif layout == "TN":

c_np = np.dot(a_np, b_np.T)

elif layout == "TT":

c_np = np.dot(a_np.T, b_np.T)

elif dtype == "int8":

c_np_type = np.int32

a_np = np.random.randint(low=-128, high=127, size=shape_a).astype(np.int8)

b_np = np.random.randint(low=-128, high=127, size=shape_b).astype(np.int8)

if layout == "NN":

c_np = np.dot(a_np.astype(np.int32), b_np.astype(np.int32))

elif layout == "NT":

c_np = np.dot(a_np.astype(np.int32).T, b_np.astype(np.int32))

elif layout == "TN":

c_np = np.dot(a_np.astype(np.int32), b_np.astype(np.int32).T)

elif layout == "TT":

c_np = np.dot(a_np.astype(np.int32).T, b_np.astype(np.int32).T)

elif dtype == "int4":

c_np_type = np.int32

a_np_int = np.random.randint(low=-8, high=7, size=shape_a).astype(np.int32)

b_np_int = np.random.randint(low=-8, high=7, size=shape_b).astype(np.int32)

# "TN"

c_np = np.dot(a_np_int.astype(np.int32), b_np_int.astype(np.int32).T)

a_np = np.zeros(shape=(N, int(L / 8)), dtype=np.int32)

b_np = np.zeros(shape=(M, int(L / 8)), dtype=np.int32)

# a_np --> col_major

for i in range(N):

for j in range(int(L / 8)):

for k in range(8):

a_np[i, j] = a_np[i, j] | ((a_np_int[i, j * 8 + k] & 0xF) << ((7 - k) * 4))

# b_np --> row_major

for i in range(M):

for j in range(int(L / 8)):

for k in range(8):

b_np[i, j] = b_np[i, j] | ((b_np_int[i, j * 8 + k] & 0xF) << ((7 - k) * 4))

elif dtype == "int1":

c_np_type = np.int32

a_np_int = np.random.randint(low=0, high=1, size=shape_a).astype(np.int32)

b_np_int = np.random.randint(low=0, high=1, size=shape_b).astype(np.int32)

# "TN"

c_np = np.dot(a_np_int.astype(np.int32), b_np_int.astype(np.int32).T)

a_np = np.zeros(shape=(N, int(L / 32)), dtype=np.int32)

b_np = np.zeros(shape=(M, int(L / 32)), dtype=np.int32)

for i in range(N):

for j in range(int(L / 32)):

for k in range(32):

a_np[i, j] = a_np[i, j] | ((a_np_int[i, j * 32 + k] & 0xF) << (31 - k))

for i in range(M):

for j in range(int(L / 32)):

for k in range(32):

b_np[i, j] = b_np[i, j] | ((b_np_int[i, j * 32 + k] & 0xF) << (31 - k))

c_tvm = tvm.nd.array(np.zeros(c_np.shape, dtype=c_np_type), ctx=ctx)

a_tvm = tvm.nd.array(a_np, ctx=ctx)

b_tvm = tvm.nd.array(b_np, ctx=ctx)

func(a_tvm, b_tvm, c_tvm)

tvm.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-3)

evaluator = func.time_evaluator(func.entry_name, ctx, number=100)

print("Time cost of this operator: %f" % evaluator(a_tvm, b_tvm, c_tvm).mean)

# We do not run the tuning in our webpage server since it takes some time.

# Uncomment the following line to run it by yourself.

# tune_and_evaluate(M, N, L, dtype, layout)

Sample Output

Best config:

[('bx', 4), ('by', 32), ('step_k', 16), ('v', 8)],,None,40

Finish loading 162 records

produce compute {

// attr [iter_var(blockIdx.y, , blockIdx.y)] thread_extent = 1

// attr [compute.local] storage_scope = "wmma.accumulator"

allocate compute.local[float32 * 256]

// attr [A.shared] storage_scope = "shared"

allocate A.shared[float16 * 8448]

// attr [B.shared] storage_scope = "shared"

allocate B.shared[float16 * 8192]

// attr [A.shared.local] storage_scope = "wmma.matrix_b"

allocate A.shared.local[float16 * 256]

// attr [B.shared.local] storage_scope = "wmma.matrix_a"

allocate B.shared.local[float16 * 256]

// attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 16

// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 2

// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 32

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 2

produce compute.local {

for (j.c.init, 0, 1) {

tvm_fill_fragment(compute.local, 16, 16, 16, 0, 0f)

}

// attr [iter_var(k.outer, )] pragma_tensor_core = 1

for (k.outer, 0, 2) {

produce A.shared {

for (ax0.ax1.outer.fused.outer, 0, 8) {

// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 32

// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 2

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 2

A.shared[ramp((((((ax0.ax1.outer.fused.outer*1056) + (floordiv(threadIdx.y, 8)*264)) + (floormod(threadIdx.y, 8)*32)) + (threadIdx.z*16)) + (threadIdx.x*8)), 1, 8)] = A[ramp(((((((ax0.ax1.outer.fused.outer*2048) + (floordiv(threadIdx.y, 8)*512)) + (k.outer*256)) + (floormod(threadIdx.y, 8)*32)) + (threadIdx.z*16)) + (threadIdx.x*8)), 1, 8)]

}

}

produce B.shared {

for (ax0.ax1.outer.fused.outer, 0, 8) {

// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 32

// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 2

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 2

B.shared[ramp(((((ax0.ax1.outer.fused.outer*1024) + (threadIdx.y*32)) + (threadIdx.z*16)) + (threadIdx.x*8)), 1, 8)] = B[ramp(((((((k.outer*131072) + (ax0.ax1.outer.fused.outer*16384)) + (threadIdx.y*512)) + (blockIdx.x*32)) + (threadIdx.z*16)) + (threadIdx.x*8)), 1, 8)]

}

}

for (k.inner.outer, 0, 16) {

produce A.shared.local {

for (ax1, 0, 1) {

tvm_load_matrix_sync(A.shared.local, 16, 16, 16, 0, &(A.shared[(((threadIdx.y/16)*4224) + (k.inner.outer*16))]), 264, "col_major")

}

}

produce B.shared.local {

for (ax0, 0, 1) {

for (ax1, 0, 1) {

tvm_load_matrix_sync(B.shared.local, 16, 16, 16, 0, &(B.shared[((k.inner.outer*512) + (threadIdx.z*16))]), 32, "col_major")

}

}

}

for (k.inner.inner, 0, 1) {

for (j.c, 0, 1) {

tvm_mma_sync(compute.local, 0, B.shared.local, 0, A.shared.local, 0, compute.local, 0)

}

}

}

}

}

for (j.inner.inner.inner, 0, 1) {

tvm_store_matrix_sync(compute.local, 16, 16, 16, 0, &(compute[((((threadIdx.y/16)*8192) + (blockIdx.x*32)) + (threadIdx.z*16))]), 512, "col_major")

}

}

#include <cuda_fp16.h>

__device__ half max(const half a, const half b)

{

return __hgt(__half(a), __half(b)) ? a : b;

}

__device__ half min(const half a, const half b)

{

return __hlt(__half(a), __half(b)) ? a : b;

}

__device__ half operator+(const volatile __half &a,  const volatile __half &b)

{

return __hadd(a, b);

}

__device__ half operator<=(const volatile __half &a,  const volatile __half &b)

{

return __hlt(a, b);

}

__device__ half operator*(const volatile __half &a,  const volatile __half &b)

{

return __hmul(a, b);

}

#include <mma.h>

extern "C" __global__ void default_function_kernel0( half* __restrict__ A,  half* __restrict__ B,  float* __restrict__ compute) {

nvcuda::wmma::fragment<nvcuda::wmma::accumulator, 16, 16, 16, float> compute_local[1];

__shared__ half A_shared[8448];

__shared__ half B_shared[8192];

nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, 16, 16, 16, half, nvcuda::wmma::col_major> A_shared_local[1];

nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, 16, 16, 16, half, nvcuda::wmma::col_major> B_shared_local[1];

for (int j_c_init = 0; j_c_init < 1; ++j_c_init) {

(void)nvcuda::wmma::fill_fragment(compute_local[0], 0.000000e+00f);

}

for (int k_outer = 0; k_outer < 2; ++k_outer) {

__syncthreads();

for (int ax0_ax1_outer_fused_outer = 0; ax0_ax1_outer_fused_outer < 8; ++ax0_ax1_outer_fused_outer) {

((__shared__ float4*)(A_shared + (((((ax0_ax1_outer_fused_outer * 1056) + ((((int)threadIdx.y) >> 3) * 264)) + ((((int)threadIdx.y) & 7) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8))))[0] = (( float4*)(A + ((((((ax0_ax1_outer_fused_outer * 2048) + ((((int)threadIdx.y) >> 3) * 512)) + (k_outer * 256)) + ((((int)threadIdx.y) & 7) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8))))[0];

}

for (int ax0_ax1_outer_fused_outer1 = 0; ax0_ax1_outer_fused_outer1 < 8; ++ax0_ax1_outer_fused_outer1) {

((__shared__ float4*)(B_shared + ((((ax0_ax1_outer_fused_outer1 * 1024) + (((int)threadIdx.y) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8))))[0] = (( float4*)(B + ((((((k_outer * 131072) + (ax0_ax1_outer_fused_outer1 * 16384)) + (((int)threadIdx.y) * 512)) + (((int)blockIdx.x) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8))))[0];

}

__syncthreads();

for (int k_inner_outer = 0; k_inner_outer < 16; ++k_inner_outer) {

for (int ax1 = 0; ax1 < 1; ++ax1) {

(void)nvcuda::wmma::load_matrix_sync(A_shared_local[0], &(A_shared[(((((int)threadIdx.y) / 16) * 4224) + (k_inner_outer * 16))]), 264);

}

for (int ax0 = 0; ax0 < 1; ++ax0) {

for (int ax11 = 0; ax11 < 1; ++ax11) {

(void)nvcuda::wmma::load_matrix_sync(B_shared_local[0], &(B_shared[((k_inner_outer * 512) + (((int)threadIdx.z) * 16))]), 32);

}

}

for (int k_inner_inner = 0; k_inner_inner < 1; ++k_inner_inner) {

for (int j_c = 0; j_c < 1; ++j_c) {

(void)nvcuda::wmma::mma_sync(compute_local[0], B_shared_local[0], A_shared_local[0], compute_local[0]);

}

}

}

}

for (int j_inner_inner_inner = 0; j_inner_inner_inner < 1; ++j_inner_inner_inner) {

(void)nvcuda::wmma::store_matrix_sync(&(compute[((((((int)threadIdx.y) / 16) * 8192) + (((int)blockIdx.x) * 32)) + (((int)threadIdx.z) * 16))]), compute_local[0], 512, nvcuda::wmma::mem_col_major);

}

}

Time cost of this operator: 0.000008

Summary

演示如何使用TVM的AutoSensorCoreCodegen生成tensorcore内核。

下载Python源代码:opt_matmul_auto_tensorcore.py

下载Jupyter笔记:opt\u matmul_auto_tensorcore.ipynb网站

https://tvm.apache.org/docs/tutorials/optimize/opt_matmul_auto_tensorcore.html#sample-output

Download Python source code: opt_matmul_auto_tensorcore.py

Download Jupyter notebook: opt_matmul_auto_tensorcore.ipynb

用Auto-TensorCore代码生成优化matmul的更多相关文章

  1. 使用Auto TensorCore CodeGen优化Matmul

    使用Auto TensorCore CodeGen优化Matmul 本文将演示如何使用TVM Auto TensorCore CodeGen在Volta / Turing GPU上编写高性能matmu ...

  2. MegEngine计算图、MatMul优化解析

    MegEngine计算图.MatMul优化解析 本文针对天元在推理优化过程中所涉及的计算图优化与 MatMul 优化进行深度解读,希望能够帮助广大开发者在利用天元 MegEngine「深度学习,简单开 ...

  3. PLSQL_性能优化系列20_Oracle Result Cash结果缓存

    20150528 Created By BaoXinjian

  4. Oracle 10G强大的SQL优化工具:SQL Tuning Advisor

    p { margin-bottom: 0.25cm; direction: ltr; color: rgb(0, 0, 0); line-height: 120%; orphans: 2; widow ...

  5. 一步步优化JVM二:JVM部署模型和JVM Runtime

    选择JVM部署模型    JVM部署模型的选择总体来说就是决定应用是部署在单个JVM实例还是多个JVM实例上(这里简单举例说明一下JVM实例,比如:我们常用eclipse开发,启动一个eclipse就 ...

  6. 关于llvm kaleidoscope: 记一次Debug血泪之路

    简而言之,慎(bu)用(yong)全局变量! 这次debug基本上花了我一周的时间,我基本上是晚上9点30下自习回然后调试到11点30,如此反复一周直到今天周五终于解决了,,以前都听说前辈们 说尽量不 ...

  7. c++的性能, c#的产能?!鱼和熊掌可以兼得,.NET NATIVE初窥

    对于微软开发者来说,每次BUILD大会都是值得期待的.这次也是惊喜满满,除了大众瞩目的WP8.1的发布还有一项会令开发者兴奋的技术出现:.NET NATIVE.下面就来详细了解一下其为何物. [小九的 ...

  8. informatica 常见问题及解决方案

    本文对于informatica使用过程中产生的问题及解决方案做总结,持续更新中... 1.partitioning option license required to run sessions wi ...

  9. [每日一题] 11gOCP 1z0-053 :2013-10-12 RESULT_CACHE在哪个池?.............................44

    转载请注明出处:http://blog.csdn.net/guoyjoe/article/details/12657479 正确答案:B   Oracle 11g 新特性:Result Cache , ...

随机推荐

  1. Windows PE变形练手1-用PE自己的机器码修改自己的逻辑

    PE变形练手1-用PE自己的机器码修改自己的逻辑 就是找一个PE文件,用自己的部分代码部分覆盖或者而修改自己另一个代码部分的补丁姿势(现实中使用很少,极少数破解可以用到.这次例子目的是了解PE). 第 ...

  2. Python数模笔记-Sklearn(1) 介绍

    1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pa ...

  3. 在AWS Glue中使用Apache Hudi

    1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读 ...

  4. 阿里云短信服务 PHP

    1.开通短信服务后,进入控制器->短信服务 2.点击国内消息,配置签名,模板(这里不作详细介绍) 3.点击进入左侧帮助文档里面,找到PHP sdk,Composer命令直接安装 4.获取acce ...

  5. Java前后端分离的认识

    1.原由 在网上查了关于前后端分离的资料,有所粗浅认识.记录下来,方便以后使用.以下均是个人看法,仅做参考.如有错误请指教,共同进步. 2.为什么前后端分离? ①.一个后台,可以让多种前台系统使用.后 ...

  6. Eclipse的安装及相关配置

    一.Eclipse的下载 二.Eclipse的安装 三.Eclipse中相关配置 一.Eclipse的下载 Eclipse各版本下载地址 1.选择要下载的版本(我这里选择的4.14版) 2.选择与自己 ...

  7. Day015 Error和Exception

    Error和Exception 什么是异常 实际工作中,遇到的情况不可能是非常完美的.比如:你写的某个模块,用户输入不一定符合你的要求.你的程序要打开某个文件,这个文件可能不存在或者文件的格式不对,你 ...

  8. net5学习笔记---依赖注入

    小王的故事 小王去上班 ​ 小王是个程序员,每个工作日他都要去上班,诸多交通工具他最喜欢的交通工具是骑电车.在骑行的过程中放空自己使他很快. ​ 突然有一天天气预报说近期有很大的雨,小王再想骑电车去上 ...

  9. Day015 异常处理机制

    异常处理机制 抛出异常 捕获异常 异常处理的五个关键字 try:监控一个代码块,有异常就能通过catch捕获 catch(想要捕获的异常类型):捕获想要捕获的异常,catch代码块的代码只有在捕获到异 ...

  10. spring为何要注入接口,而注入接口的实现类就会报错

    首先说明,注入的对象确实为实现类的对象.(并不是实现类的代理对象,注入并不涉及代理) 如果只是单纯注入是可以用实现类接收注入对象的,但是往往开发中会对实现类做增强,如事务,日志等,实现增强的AOP技术 ...