链接:

P4555


题意:

在字符串 \(S\) 中找出两个相邻非空回文串,并使它们长度之和最大。


分析:

直接使用马拉车算法求出每个点扩展的回文串。如果枚举两个回文串显然会超时,我们考虑切割一个长串,即枚举切割点,只需枚举每个 \(\#\) 即可,但为了保证两个串都非空,所以最左和最右的 \(\#\) 不能枚举。然后我们需要找到最靠左的回文串中心 \(L\) 使得该回文串包括该点,以及最靠右的回文串中心 \(R\) 使得该回文串包括该点,发现两个回文串长度之和就是 \(R-L\)。同时我们发现当切割点向右移动,\(L\) 的位置是单调增的,当切割点向左移动,\(R\) 的位置是单调减的。所以我们可以双指针维护出每个切割点位置对应的 \(L\) 和 \(R\)。于是就做完了。


代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+5;
string t="@#";int n;
inline void gett(){
char c=getchar();
while(c>'z'||c<'a')c=getchar();
while(c>='a'&&c<='z')t+=c,t+="#",c=getchar();
n=t.length();
}
int hm[N],mr,mid;
inline void match(){
for(int i=1;i<n;i++){
hm[i]=(mr>i)?min(hm[(mid<<1)-i],mr-i):1;
while(t[i+hm[i]]==t[i-hm[i]])hm[i]++;
if(i+hm[i]>mr)mr=i+hm[i],mid=i;
}
}
int ans,now;
int l[N],r[N];
signed main(){
gett();
match();
now=1;
for(int i=1;i<n;i++){
while(i>now+hm[now]-1)now++;
l[i]=now;//最靠左的回文串中心L
}
now=n;
for(int i=n-1;i>=1;i--){
while(i<now-hm[now]+1)now--;
r[i]=now;//最靠右的回文串中心R
}
for(int i=3;i<n-2;i+=2)
ans=max(r[i]-l[i],ans);
cout<<ans;
return 0;
}

洛谷 P4555 [国家集训队]最长双回文串的更多相关文章

  1. 洛谷 P4555 [国家集训队]最长双回文串 解题报告

    P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...

  2. 洛谷 P4555 [国家集训队]最长双回文串(Manacher)

    题目链接:https://www.luogu.com.cn/problem/P4555 首先明白两个回文串,那么要使两个回文串成立,那么我们只能把$'#'$作为中间节点. 然后我们跑一边Manache ...

  3. 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)

    题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...

  4. 【洛谷】P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...

  5. P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...

  6. Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串

    题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...

  7. P4555 [国家集训队]最长双回文串(回文树)

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...

  8. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  9. [国家集训队]最长双回文串 manacher

    ---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...

随机推荐

  1. Docker部署启动错误,需要手动进入Docker的容器里,启动程序,排查错误

    #docker-compose build --no-cache //重新创建容器,不管有没有 #docker-compose up #docker-compose up -d //后台启动并运行容器 ...

  2. 从输入 URL 到展现页面的全过程

    总体分为以下几个过程 DNS解析 TCP连接 发送HTTP请求 服务器处理请求并返回HTTP报文 浏览器解析渲染页面 连接结束 DNS解析 域名到ip地址转换 TCP连接 HTTP连接是基于TCP连接 ...

  3. 使用zipKin构建NetCore分布式链路跟踪

    本文主要讲解使用ZipKin构建NetCore分布式链路跟踪 场景 因为最近公司业务量增加,而项目也需要增大部署数量,K8S中Pod基本都扩容了一倍,新增了若干物理机,部分物理机网络通信存在问题,导致 ...

  4. Java之SpringBoot自定义配置与整合Druid

    Java之SpringBoot自定义配置与整合Druid SpringBoot配置文件 优先级 前面SpringBoot基础有提到,关于SpringBoot配置文件可以是properties或者是ya ...

  5. Linux系列(38) - 源码包安装(2)

    安装前准备 安装C语言编译器"gcc" yum -y install gcc --c 源码包语言编译器 下载源码包 安装注意事项 源代码保存位置:/usr/local/src/ 软 ...

  6. Charles注册

    方法一:注册码注册 ** 注册码注册:** Registered Name: https://zhile.io License Key: 48891cf209c6d32bf4 亲测4.6.1可用 方法 ...

  7. Linux 清理缓存

    1. free -m 命令可以查看内存使用情况  2. sync   :因为系统在操作的过程当中,会把你的操作到的文件资料先保存到buffer中去,因为怕你在操作的过程中因为断电等原因遗失数据,所以在 ...

  8. [转载]SELinux安全系统基础

    链接:http://www.cnblogs.com/xiaoluo501395377/archive/2013/05/26/3100444.html 本篇随笔将记录一下学习SELinux的一些心得与体 ...

  9. 对代理IP进行检测是否可用

    第一种方法是使用telnetlib import telnetlib import requests from lxml import etree #解析此url页面的IP url = 'http:/ ...

  10. P7854-「EZEC-9」GCD Tree【构造】

    正题 题目连接:https://www.luogu.com.cn/problem/P7854 题目大意 给出\(n\)数字的一个序列\(a\). 现在要求构造一棵树,使得对于任意的\((x,y)\)都 ...