洛谷 P4555 [国家集训队]最长双回文串
链接:
题意:
在字符串 \(S\) 中找出两个相邻非空回文串,并使它们长度之和最大。
分析:
直接使用马拉车算法求出每个点扩展的回文串。如果枚举两个回文串显然会超时,我们考虑切割一个长串,即枚举切割点,只需枚举每个 \(\#\) 即可,但为了保证两个串都非空,所以最左和最右的 \(\#\) 不能枚举。然后我们需要找到最靠左的回文串中心 \(L\) 使得该回文串包括该点,以及最靠右的回文串中心 \(R\) 使得该回文串包括该点,发现两个回文串长度之和就是 \(R-L\)。同时我们发现当切割点向右移动,\(L\) 的位置是单调增的,当切割点向左移动,\(R\) 的位置是单调减的。所以我们可以双指针维护出每个切割点位置对应的 \(L\) 和 \(R\)。于是就做完了。
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+5;
string t="@#";int n;
inline void gett(){
char c=getchar();
while(c>'z'||c<'a')c=getchar();
while(c>='a'&&c<='z')t+=c,t+="#",c=getchar();
n=t.length();
}
int hm[N],mr,mid;
inline void match(){
for(int i=1;i<n;i++){
hm[i]=(mr>i)?min(hm[(mid<<1)-i],mr-i):1;
while(t[i+hm[i]]==t[i-hm[i]])hm[i]++;
if(i+hm[i]>mr)mr=i+hm[i],mid=i;
}
}
int ans,now;
int l[N],r[N];
signed main(){
gett();
match();
now=1;
for(int i=1;i<n;i++){
while(i>now+hm[now]-1)now++;
l[i]=now;//最靠左的回文串中心L
}
now=n;
for(int i=n-1;i>=1;i--){
while(i<now-hm[now]+1)now--;
r[i]=now;//最靠右的回文串中心R
}
for(int i=3;i<n-2;i+=2)
ans=max(r[i]-l[i],ans);
cout<<ans;
return 0;
}
洛谷 P4555 [国家集训队]最长双回文串的更多相关文章
- 洛谷 P4555 [国家集训队]最长双回文串 解题报告
P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...
- 洛谷 P4555 [国家集训队]最长双回文串(Manacher)
题目链接:https://www.luogu.com.cn/problem/P4555 首先明白两个回文串,那么要使两个回文串成立,那么我们只能把$'#'$作为中间节点. 然后我们跑一边Manache ...
- 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)
题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...
- 【洛谷】P4555 [国家集训队]最长双回文串
P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...
- P4555 [国家集训队]最长双回文串
P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...
- Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串
题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...
- P4555 [国家集训队]最长双回文串(回文树)
题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...
- BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)
BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...
- [国家集训队]最长双回文串 manacher
---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...
随机推荐
- 动态路由——OSPF
目录: 一. OSPF路由协议概述 1,OSPF协议 2,内部网关协议和外部网关协议 3,OSPF的工作过程 二.OSPF基本概念 1,OSPF区域 2,区域ID 3,R ...
- C# 反射 + Quartz,实现流程处理
场景: 前不久,公司里项目经理要求我实现流程处理,比如,用户可以定义一个定时任务,每周一查看报表.定时任务很简单,用Quartz可以实现,但是用户自己选择报表就比较麻烦,因为系统的不同模块的生成报表的 ...
- 手把手教你调试SpringBoot启动 IoC容器初始化源码,spring如何解决循环依赖
授人以鱼不如授人以渔,首先声明这篇文章并没有过多的总结和结论,主要内容是教大家如何一步一步自己手动debug调试源码,然后总结spring如何解决的循环依赖,最后,操作很简单,有手就行. 本次调试 是 ...
- Flutter 对状态管理的认知与思考
前言 由 编程技术交流圣地[-Flutter群-] 发起的 状态管理研究小组,将就 状态管理 相关话题进行为期 两个月 的讨论. 目前只有内定的 5 个人参与讨论,如果你对 状态管理 有什么独特的见解 ...
- java中的swing设计界面时怎么加上背景图片。而不覆盖其他控件?
通过以下方式设置下背景就可以了: import java.awt.Container; import javax.swing.ImageIcon; import javax.swing.JFrame; ...
- VUE页面跳转方式
一.to +跳转路径 <router-link to="/">跳转到主页</router-link> <router-link :to="{ ...
- 关于微信小程序爬虫关于token自动更新问题
现在很多的app都很喜欢在微信或者支付宝的小程序内做开发,毕竟比较方便.安全.有流量.不需要再次下载app,好多人会因为加入你让他下载app他会扭头就走不用你的app,毕竟做类似产品的不是你一家. 之 ...
- 华为云计算IE面试笔记-华为云计算解决方案业务迁移支持哪些迁移?有哪些特点?请描述基本的业务交付流程、业务迁移流程和原则。
1. 迁移场景:华为云计算解决方案按照源端环境来说,支持P2V.V2V(P2V:物理设备(操作系统及其上的应用软件和数据)迁移到华为虚拟化平台.V2V:其他厂商的虚拟化平台迁移到华为虚拟化平台.)以及 ...
- mysql从零开始之MySQL 安装
MySQL 安装 所有平台的 MySQL 下载地址为: MySQL 下载 . 挑选你需要的 MySQL Community Server 版本及对应的平台. 注意:安装过程我们需要通过开启管理员权限来 ...
- Java类加载器概述
Java类加载器概述 Java 中的类加载器大致可以分成两类,一类是系统提供的,另外一类则是由Java 应用开发人员编写的. 系统提供的类加载器 引导类加载器 它用来加载 Java 的核心库,是用原生 ...