正题

题目链接:https://www.luogu.com.cn/problem/CF204E


题目大意

\(n\)个字符串的一个字符串集合,对于每个字符串求有多少个子串是这个字符串集合中至少\(k\)个字符串的子串。


解题思路

因为对于每个字符串我们需要维护的信息不同,不能累加,所以考虑使用线段树合并。

先将\(n\)个字符串构建出一个广义\(SAM\),然后对于每个节点维护一个该线段树表示该节点属于的字符串。然后在\(parents\)树上从下往上合并,如果属于字符串的数量多余\(k\),那么打上标记。

然后再上往下走,每个节点产生的答案就是在它\(parents\)树上的祖先中最近的一个打了标记的节点的\(len\)。

时间复杂度\(O(n\log n)\)

好像还可以先接起来跑一遍\(SA\),然后用单调队列类似于统计矩形面积一样的方法来做,也是\(O(n\log n)\)当然我这里写的是\(SAM\)


\(code\)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=2e5+10;
struct node{
int to,next;
}a[N<<1];
int n,k,cnt,tot,ls[N],rt[N];
int ch[N][26],fa[N],len[N];
bool mark[N];char s[N];
long long ans[N];
vector<int> q[N];
struct Seq_Tree{
int w[N<<4],ls[N<<4],rs[N<<4],cnt;
int Change(int x,int L,int R,int pos,int val){
int y=++cnt;
if(L==R){w[y]=val;return y;}
int mid=(L+R)>>1;
if(pos<=mid)ls[y]=Change(ls[x],L,mid,pos,val),rs[y]=rs[x];
else ls[y]=ls[x],rs[y]=Change(rs[x],mid+1,R,pos,val);
w[y]=w[ls[y]]+w[rs[y]];return y;
}
int Ask(int x,int L,int R,int pos){
if(!x)return 0;
if(L==R)return w[x];
int mid=(L+R)>>1;
if(pos<=mid)return Ask(ls[x],L,mid,pos);
return Ask(rs[x],mid+1,R,pos);
}
int Merge(int x,int y,int L,int R){
if((!x)||(!y))return x|y;
if(L==R){w[x]=w[x]|w[y];return x;}
int mid=(L+R)>>1;
ls[x]=Merge(ls[x],ls[y],L,mid);
rs[x]=Merge(rs[x],rs[y],mid+1,R);
w[x]=w[ls[x]]+w[rs[x]];
return x;
}
}T;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
int Insert(int c,int p){
if(ch[p][c]){
int q=ch[p][c];
if(len[q]==len[p]+1)return q;
int nq=++cnt;len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q];fa[q]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
return nq;
}
int np=++cnt;len[np]=len[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else{
int q=ch[p][c];
if(len[q]==len[p]+1)fa[np]=q;
else{
int nq=++cnt;len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
return np;
}
void dfs(int x){
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
dfs(y);
rt[x]=T.Merge(rt[x],rt[y],1,n);
}
if(T.w[rt[x]]>=k)mark[x]=1;
return;
}
void solve(int x,int res){
if(mark[x])res=len[x];
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
solve(y,res);
}
for(int i=0;i<q[x].size();i++)
ans[q[x][i]]+=res;
return;
}
int main()
{
scanf("%d%d",&n,&k);cnt=1;
for(int i=1;i<=n;i++){
scanf("%s",s);
int l=strlen(s),last=1;
for(int j=0;j<l;j++){
last=Insert(s[j]-'a',last);
rt[last]=T.Change(rt[last],1,n,i,1);
q[last].push_back(i);
}
}
for(int i=2;i<=cnt;i++)addl(fa[i],i);
dfs(1);solve(1,0);
for(int i=1;i<=n;i++)
printf("%lld\n",ans[i]);
return 0;
}

CF204E-Little Elephant and Strings【广义SAM,线段树合并】的更多相关文章

  1. CF666E-Forensic Examination【广义SAM,线段树合并】

    正题 题目链接:https://www.luogu.com.cn/problem/CF666E 解题思路 给出一个串\(S\)和\(n\)个串\(T_i\).\(m\)次询问\(S_{a\sim b} ...

  2. YbtOJ#532-往事之树【广义SAM,线段树合并】

    正题 题目链接:https://www.ybtoj.com.cn/problem/532 题目大意 给出\(n\)个点的一个\(Trie\)树,定义\(S_x\)表示节点\(x\)代表的字符串 求$$ ...

  3. CodeForces - 666E: Forensic Examination (广义SAM 线段树合并)

    题意:给定字符串S,然后M个字符串T.Q次询问,每次给出(L,R,l,r),问S[l,r]在L到R这些T字符串中,在哪个串出现最多,以及次数. 思路:把所有串建立SAM,然后可以通过倍增走到[l,r] ...

  4. CF666E Forensic Examination——SAM+线段树合并+倍增

    RemoteJudge 题目大意 给你一个串\(S\)以及一个字符串数组\(T[1...m]\),\(q\)次询问,每次问\(S\)的子串\(S[p_l...p_r]\)在\(T[l...r]\)中的 ...

  5. 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree

    原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...

  6. UOJ#395. 【NOI2018】你的名字 字符串,SAM,线段树合并

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ395.html 题解 记得同步赛的时候这题我爆0了,最暴力的暴力都没调出来. 首先我们看看 68 分怎么做 ...

  7. Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html 题解 首先建个SAM. 一个结论:对于parent树上任意一个点x,以及它所代表的子树内任 ...

  8. loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增

    题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...

  9. 2019.02.27 bzoj4556: [Tjoi2016&Heoi2016]字符串(二分答案+sam+线段树合并)

    传送门 题意:给一个字符串SSS. 有mmm次询问,每次给四个参数a,b,c,da,b,c,da,b,c,d,问s[a...b]s[a...b]s[a...b]的所有子串和s[x...y]s[x... ...

随机推荐

  1. 简单介绍无限轮播图,js源代码

    无限轮播图js源代码,今天介绍一下用js简单的编写无限轮播图 <!DOCTYPE html> <html>   <head>     <meta charse ...

  2. WPF中实现动画的几种效果(最基础方式)

    参考网址:https://blog.csdn.net/qq_45096273/article/details/106256397 在动画之前我们先了解一下几个声明式动画中常用的元素: 一.Storyb ...

  3. C#的6种常用集合类

    一.先来说说数组的不足(也可以说集合与数组的区别): 1.数组是固定大小的,不能伸缩.虽然System.Array.Resize这个泛型方法可以重置数组大小,但是该方法是重新创建新设置大小的数组,用的 ...

  4. Java变量命名规范

    java命名规范 所有方法.变量.类名:见名知意 类成员变量:首字母小写.驼峰原则: 例如:lastName 第一个单词首字母小写,其余首字母大写 局部变量:首字母小写.驼峰原则 类名: 首字母小写. ...

  5. Android App性能测试之adb命令

    本篇文章总结了Android App性能测试过程中常用的adb命令.通过这些adb命令,可以查看App的性能数据,为评判性能好坏作参考. CPU相关 显示占用CPU最大的5个应用 adb shell ...

  6. C# 实现图片上传

    C# 实现图片上传 C#实现图片上传: 通过页面form表单提交数据到动作方法,动作方法实现保存图片到指定路径,并修改其文件名为时间格式 页面设置 这里使用的模板MVC自带的模板视图 <h2&g ...

  7. Linux下Sed替换时无法解析变量

    1.问题描述 用sed替换文件中的IP时,想替换成$es_ip中的值,但是却不能解析这个变量$es_ip sed -ri 's/([0-9]{1,3}\.){3}[0-9]{1,3}/$es_ip/g ...

  8. noip模拟30

    \(\color{white}{\mathbb{缀以无尽之群星点点,饰以常青之巨木郁郁,可细斟木纹叶脉,独无可极苍穹之览,名之以:密林}}\) 看完题后感觉整套题都没什么思路,而且基本上整场考试确实是 ...

  9. CSS001. 纯CSS实现瀑布流(纵向排序)

    通过 Multi-columns 相关的属性 column-count.column-gap 配合 break-inside 来实现瀑布流布局. 首先对包裹图片的盒子增加样式,column-count ...

  10. 缓存一致性?get💡

    大家好,我是老三,今天又是被算法致郁的一天,写篇文章缓一缓. 这篇文章,我们来看看缓存一致性问题. 缓存一致性 我接下来会巴巴说一堆缓存一致性,但是-- 作为一名暴躁老哥,我先把结论撂这了! 缓存和数 ...