\(\mathcal{Description}\)

  Link.

  对于积性函数 \(f(x)\),有 \(f(p^k)=p^k(p^k-1)~(p\in\mathbb P,k\in\mathbb N_+)\)。求 \(\sum_{i=1}^nf(i)\bmod(10^9+7)\)。

  \(n\le10^{10}\)。

\(\mathcal{Solution}\)

  Min_25 筛是不可能的。

  Powerful Number 三步走咯!考虑素数点值:

\[f(p)=p^2-p
\]

那么令 \(g=\operatorname{id}\cdot\varphi\)(点乘号即数值相乘),就有 \(g(p)=p^2-p\)。积性函数的点乘亦为积性函数。

  求 \(g\) 的前缀和,杜教筛基础操作,卷上一个 \(\operatorname{id}\):

\[\begin{aligned}
\lbrack(\operatorname{id}\cdot\varphi)\star\operatorname{id}\rbrack(n)&=\sum_{i\mid n}(\operatorname{id}\cdot\varphi)(i)\cdot\frac{n}{i}\\
&=\sum_{i\mid n}n\varphi(i)\\
&=n^2
\end{aligned}
\]

自然数平方和易求,丢到杜教筛的式子里,推导后得出

\[S(n)=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^niS\left(\lfloor\frac{n}{i}\rfloor\right)
\]

其中 \(S(n)\) 即为 \(\sum_{i=1}^ng(i)\)。

  求 \(h(p^k)\),可以用 Bell 级数推导。令 \(F_p,G_p,H_p\) 分别为 \(f,g,h\) 在某一素数 \(p\) 的 Bell 级数,则

\[\begin{cases}
F_p=\operatorname{OGF}\langle1,p(p-1),p^2(p^2-1),\cdots\rangle=\frac{1}{1-p^2z}-\frac{1}{1-pz}+1\\
G_p=\operatorname{OGF}\langle1,p(p-1),p^3(p-1),\cdots\rangle=\frac{1-pz}{1-p^2z}
\end{cases}
\]

应用“两函数 Bell 级数的乘法卷积”为“原函数 Dirichlet 卷积之 Bell 级数”的性质,得到

\[\begin{aligned}
H_p&=\frac{F_p}{G_p}\\
&=\frac{\frac{1}{1-p^2z}-\frac{1}{1-pz}+1}{\frac{1-pz}{1-p^2z}}\\
&=\frac{1-\frac{1-p^2z}{1-pz}+1-p^2z}{1-pz}\\
&=\frac{1}{1-pz}-\frac{1-p^2z}{(1-pz)^2}+\frac{1-p^2z}{1-pz}\\
\end{aligned}
\]

我们仅仅想求 \(h(p^k)\),即 \([z^k]H_p\),那么

\[\begin{aligned}
\lbrack z^k\rbrack H_p&=[z^k]\frac{1}{1-pz}-[z^k]\frac{1-p^2z}{(1-pz)^2}-[z^k]\frac{1-p^2z}{1-pz}\\
&=p^k-[(k+1)p^k-kp^{k+1}]+(p^k-p^{k+1})\\
&=(k-1)(p^{k+1}-p^k)
\end{aligned}
\]

  最终,\(\mathcal O(n^{\frac{2}{3}})\) 就能求出答案啦。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <unordered_map> #define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) typedef long long LL; const int MOD = 1e9 + 7, MAXSN = 1e7, INV2 = 500000004, INV6 = 166666668;
int pn, pr[MAXSN + 5], gs[MAXSN + 5], phi[MAXSN + 5];
bool npr[MAXSN + 5]; inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); } inline void sieve() {
phi[1] = gs[1] = 1;
rep ( i, 2, MAXSN ) {
if ( !npr[i] ) phi[pr[++pn] = i] = i - 1;
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= MAXSN; ++j ) {
npr[t] = true;
if ( !( i % pr[j] ) ) { phi[t] = phi[i] * pr[j]; break; }
phi[t] = phi[i] * ( pr[j] - 1 );
}
gs[i] = add( gs[i - 1], mul( i, phi[i] ) );
}
} inline int gSum( const LL n ) {
static std::unordered_map<LL, int> mem;
if ( n <= MAXSN ) return gs[n];
if ( mem.count( n ) ) return mem[n];
int ret = mul( n % MOD, mul( mul( ( n + 1 ) % MOD,
( n << 1 | 1 ) % MOD ), INV6 ) );
for ( LL l = 2, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
subeq( ret, mul(
mul( mul( ( l + r ) % MOD, ( r - l + 1 ) % MOD ), INV2 ),
gSum( n / l ) ) );
}
return mem[n] = ret;
} LL n; inline int powerSum( const int pid, LL x, const LL v ) {
if ( !v ) return 0;
int ret = 0, p = pr[pid];
if ( pid == 1 || !( x % pr[pid - 1] ) ) ret = mul( v, gSum( n / x ) );
if ( pid > pn ) return ret;
if ( ( x *= p ) > n ) return ret;
if ( ( x *= p ) > n ) return ret;
LL pwr = 1ll * p * p;
if ( pid < pn ) addeq( ret, powerSum( pid + 1, x / pwr, v ) );
for ( int j = 2; x <= n; ++j, x *= p, pwr *= p ) {
addeq( ret, powerSum( pid + 1, x,
mul( v, mul( j - 1, pwr % MOD * ( p - 1 ) % MOD ) ) ) );
}
return ret;
} int main() {
sieve();
scanf( "%lld", &n );
printf( "%d\n", powerSum( 1, 1, 1 ) );
return 0;
}

Solution -「洛谷 P5325」Min_25 筛的更多相关文章

  1. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  2. Note/Solution -「洛谷 P5158」「模板」多项式快速插值

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...

  3. Solution -「洛谷 P4198」楼房重建

    \(\mathcal{Description}\)   Link.   给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...

  4. Solution -「洛谷 P6577」「模板」二分图最大权完美匹配

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...

  5. Solution -「洛谷 P6021」洪水

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...

  6. Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集.   \(n,m\le10^5 ...

  7. Solution -「洛谷 P5236」「模板」静态仙人掌

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路.   \(n,q\le10^4\),\(m\ ...

  8. Solution -「洛谷 P4320」道路相遇

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...

  9. Solution -「洛谷 P5827」边双连通图计数

    \(\mathcal{Description}\)   link.   求包含 \(n\) 个点的边双连通图的个数.   \(n\le10^5\). \(\mathcal{Solution}\)    ...

随机推荐

  1. kubernetes 之部署metrics-server

    Kubernetes 版本是 1.14 # kubectl version --short Client Version: v1.14.3 Server Version: v1.14.2 下载文件 f ...

  2. GDB基础知识

    GDB 基础知识 GDB 基础知识 一.简介 支持命令补全功能 GDB 的调用与退出 二.GDB 的基本指令 1. run/r 2. break/b 3. info breakpoints 4. de ...

  3. IDEA导入Web项目配置Tomcat启动

    1.导入项目 2.配置project 3.导入项目模块 配置Models 4.配置Libraries 5. 6. 7.配置tomcat

  4. promise到底怎么理解

    Promise的含义promise是异步编程的一种解决方法.所谓promise,简单说是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果,从语法上说,promise是一个对象,从 ...

  5. Selenium_python自动化跨浏览器执行测试

    Selenium_python自动化跨浏览器执行测试(简单多线程案例)  转:https://www.cnblogs.com/dong-c/p/8976746.html 跨浏览器测试是功能测试的一个分 ...

  6. LaTex 中圆圈序号及一些特殊字符的输入

    众所周知,LATEX 提供了 \textcircled 命令用以给字符加圈,但效果却不怎么好: 实际上,加圈并不是一个平凡的变换,它会涉及到圈内字符形状的微调,而这是几乎无法在 TEX 宏层面解决的. ...

  7. 【记录一个问题】redis中执行事务出现错误“EXECABORT Transaction discarded because of previous errors”

    执行事务的大致代码如下: redisClient := GetRedisClient() pipe := redisClient.TxPipeline() err := pipe.ZAdd(k, ar ...

  8. 【记录一个问题】opencv中 cv::dft()与cv::ocl_dft()计算的结果相差较大

    以一个跟踪算法来测试: 使用cv::dft(), 矩阵未按照2次幂对齐,最终跟踪平均准确率 84.3% 使用cv::dft(),矩阵使用cv::copyMakeBorder对齐,最终跟踪平均准确率 8 ...

  9. ROS之arduino交互

    一.第一种安装方式(不支持自定义消息) 第一步打开官网 http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup 第二 ...

  10. 百度云管家使用socks代理无法上传下载解决办法

    像前几篇随笔描述的那样,笔者在学校里通过shadowsocks使用ipv6访问双栈vps来免费使用外网,但是在设置百度云管家的代理时发现:使用socks代理客户端可以访问文件列表,但是无法上传下载. ...