\(\mathcal{Description}\)

  Link.

  求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集。

  \(n\le5\times10^4\),\(m\le6\times10^4\)。

\(\mathcal{Solution}\)

  建出圆方树,考虑树上 DP。

  设状态 \(f(i,0/1)\) 表示该点不选择/不限制选择与父亲相邻的圆点(对于圆点,即它本身)时,子树内的最大独立集。转移分圆点和方点讨论:

  • 圆点:很显然,\(f(u,0)=\sum_{v\in son_u}f(v,1),f(u,1)=\max\{f(u,0),\sum_{v\in son_u}f(v,0)+1\}\)。

  • 方点:考虑把方点所代表的环展开成链。在链上做一个子 DP:令 \(g(i,0/1)\) 表示选择/不限制选择第 \(i\) 给点,前 \(i\) 个点的子树内的最大独立集大小。记 \(son_i\) 表示 \(u\) 的第 \(i\) 个儿子,和 \(f(u,0)\) 的转移类似,有:

    • \(g(i,0)=g(i-1,1)+f(son_i,0)\)。

    • \(g(i,1)=\max\{g(i,0),g(i-1,0)+f(son_i,1)\}\)。

  在求 \(f(u,0)\) 时,令 \(g(1,0)=g(1,1)=f(son_1,0)\);在求 \(f(u,1)\) 时,令 \(g(1,0)=f(son_1,0),g(1,1)=f(son_1,1)\),分别转移两次即可。

  最后,\(f(root,1)\) 就是答案。

  复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

  读边只读 \(n\) 条调了半天 qwq。

#include <queue>
#include <cstdio>
#include <algorithm> #define adj( g, u, v ) \
for ( unsigned eid = 0, v; eid ^ g.vec[u].size () && ( v = g.vec[u][eid], 1 ); ++ eid ) const int MAXN = 2e5, MAXM = 2.4e5;
int n, m, q, snode;
int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5];
int f[MAXN + 5][2]; struct Graph {
// int ecnt, head[MAXN + 5], to[MAXM + 5], nxt[MAXM + 5];
std::vector<int> vec[MAXN + 5];
inline void link ( const int s, const int t ) {
// to[++ ecnt] = t, nxt[ecnt] = head[s];
// head[s] = ecnt;
vec[s].push_back ( t );
}
inline void add ( const int u, const int v ) {
link ( u, v ), link ( v, u );
}
} src, tre; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; } inline bool chkmax ( int& a, const int b ) { return a < b ? a = b, true : false; } inline void Tarjan ( const int u, const int fa ) {
dfn[u] = low[u] = ++ dfc, stk[++ top] = u;
adj ( src, u, v ) if ( v ^ fa ) {
if ( ! dfn[v] ) {
Tarjan ( v, u ), chkmin ( low[u], low[v] );
if ( low[v] >= dfn[u] ) {
++ snode;
do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v );
tre.link ( u, snode );
}
} else chkmin ( low[u], dfn[v] );
}
} inline void solve ( const int u, const int fa ) {
if ( u <= n ) {
f[u][0] = 0, f[u][1] = 1;
adj ( tre, u, v ) if ( v ^ fa ) {
solve ( v, u );
f[u][0] += f[v][1], f[u][1] += f[v][0];
}
chkmax ( f[u][1], f[u][0] );
} else {
static int tmp[MAXN + 5][2];
for ( int v: tre.vec[u] ) if ( v ^ fa ) solve ( v, u );
tmp[0][0] = tmp[0][1] = f[tre.vec[u][0]][0];
for ( int i = 1; i ^ tre.vec[u].size (); ++ i ) {
tmp[i][0] = tmp[i - 1][1] + f[tre.vec[u][i]][0];
tmp[i][1] = tmp[i - 1][0] + f[tre.vec[u][i]][1];
chkmax ( tmp[i][1], tmp[i][0] );
}
f[u][0] = tmp[tre.vec[u].size () - 1][0];
tmp[0][0] = f[tre.vec[u][0]][0], tmp[0][1] = f[tre.vec[u][0]][1];
for ( int i = 1; i ^ tre.vec[u].size (); ++ i ) {
tmp[i][0] = tmp[i - 1][1] + f[tre.vec[u][i]][0];
tmp[i][1] = tmp[i - 1][0] + f[tre.vec[u][i]][1];
chkmax ( tmp[i][1], tmp[i][0] );
}
f[u][1] = tmp[tre.vec[u].size () - 1][1];
}
} int main () {
n = snode = rint (), m = rint ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
src.add ( u, v );
}
Tarjan ( 1, 0 );
solve ( 1, 0 );
printf ( "%d\n", f[1][1] );
return 0;
}

Solution -「BZOJ 4316」小C的独立集的更多相关文章

  1. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  2. 「BZOJ 3280」小R的烦恼

    题目链接 戳我 \(Solution\) 这道题很像餐巾计划啊. 首先将每天拆成\(x\)和\(x'\),\(S->x\)流量为\(a_i\),费用为\(0\)表示一天下来有\(a_i\)个濒死 ...

  3. Solution -「BZOJ #3786」星系探索

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...

  4. Solution -「BZOJ 3331」压力

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \ ...

  5. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  6. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  7. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  8. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  9. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

随机推荐

  1. 通过脚本升级PowerShell

    Update Powershell through command line https://superuser.com/questions/1287032/update-powershell-thr ...

  2. [ unittest ] 使用初体验

    import unittest from cal import Calculate class Mytest(unittest.TestCase): def setUp(self): self.cal ...

  3. 离线环境安装使用 Ansible

    之前写了一篇介绍 Ansible 的文章 ,今天回顾看来写的有些匆忙,一些具体的操作步骤都没有讲明白,不利于读者复现学习.最近又申请了一个几百台机器的环境,正好借此机会把如何在离线环境中使用 Ansi ...

  4. Flowable实战(六)集成JPA

      上文提到,Flowable所有的表单数据都保存在一张表(act_hi_varinst)中,随着时间的推移,表中数据越来越多,再加上数据没有结构优化,查询使用效率会越来越低.   在Flowable ...

  5. Web开发之Cookie and Session

    会话 什么是会话? 简单说:用户开一个浏览器,点击多个超链接,访问服务器的多个web资源,然后关闭浏览器,整个过程就称之为一个会话. 会话过程要解决什么问题 每个用户在使用浏览器与服务器进行会话的过程 ...

  6. Julia语言介绍

    官网:https://julialang.org/ 中文社区:https://cn.julialang.org/ Julia 是一个面向科学计算的高性能动态高级程序设计语言. 首先定位是通用编程语言, ...

  7. 游戏mod启动器原理

    基本原理 游戏程序会按一定顺序读取游戏文件夹根目录的文件. 所以我们制作mod和补丁的时候需要使得我们的文件先读取,从而使得后面读取到重复内容时候,游戏运行的内存中舍弃掉原本的文件. 游戏mod启动器 ...

  8. React教程

    教程 一.demo <!DOCTYPE html> <html> <head> <meta charset="UTF-8"/> &l ...

  9. MobaXterm中文乱码问题

    现在Xshell和SecureCRT都要收费,本着不用盗版的原则,同时需要标签管理session,快捷命令等功能,最后选择了MobaXterm. 但是使用后发现中文会乱码.后按照博客的方法,修改了终端 ...

  10. 集合框架-ArrayList集合存储自定义对象

    1 package cn.itcast.p3.arraylist.test; 2 3 import java.util.ArrayList; 4 import java.util.Iterator; ...