\(\mathcal{Description}\)

  Link.

  求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集。

  \(n\le5\times10^4\),\(m\le6\times10^4\)。

\(\mathcal{Solution}\)

  建出圆方树,考虑树上 DP。

  设状态 \(f(i,0/1)\) 表示该点不选择/不限制选择与父亲相邻的圆点(对于圆点,即它本身)时,子树内的最大独立集。转移分圆点和方点讨论:

  • 圆点:很显然,\(f(u,0)=\sum_{v\in son_u}f(v,1),f(u,1)=\max\{f(u,0),\sum_{v\in son_u}f(v,0)+1\}\)。

  • 方点:考虑把方点所代表的环展开成链。在链上做一个子 DP:令 \(g(i,0/1)\) 表示选择/不限制选择第 \(i\) 给点,前 \(i\) 个点的子树内的最大独立集大小。记 \(son_i\) 表示 \(u\) 的第 \(i\) 个儿子,和 \(f(u,0)\) 的转移类似,有:

    • \(g(i,0)=g(i-1,1)+f(son_i,0)\)。

    • \(g(i,1)=\max\{g(i,0),g(i-1,0)+f(son_i,1)\}\)。

  在求 \(f(u,0)\) 时,令 \(g(1,0)=g(1,1)=f(son_1,0)\);在求 \(f(u,1)\) 时,令 \(g(1,0)=f(son_1,0),g(1,1)=f(son_1,1)\),分别转移两次即可。

  最后,\(f(root,1)\) 就是答案。

  复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

  读边只读 \(n\) 条调了半天 qwq。

#include <queue>
#include <cstdio>
#include <algorithm> #define adj( g, u, v ) \
for ( unsigned eid = 0, v; eid ^ g.vec[u].size () && ( v = g.vec[u][eid], 1 ); ++ eid ) const int MAXN = 2e5, MAXM = 2.4e5;
int n, m, q, snode;
int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5];
int f[MAXN + 5][2]; struct Graph {
// int ecnt, head[MAXN + 5], to[MAXM + 5], nxt[MAXM + 5];
std::vector<int> vec[MAXN + 5];
inline void link ( const int s, const int t ) {
// to[++ ecnt] = t, nxt[ecnt] = head[s];
// head[s] = ecnt;
vec[s].push_back ( t );
}
inline void add ( const int u, const int v ) {
link ( u, v ), link ( v, u );
}
} src, tre; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; } inline bool chkmax ( int& a, const int b ) { return a < b ? a = b, true : false; } inline void Tarjan ( const int u, const int fa ) {
dfn[u] = low[u] = ++ dfc, stk[++ top] = u;
adj ( src, u, v ) if ( v ^ fa ) {
if ( ! dfn[v] ) {
Tarjan ( v, u ), chkmin ( low[u], low[v] );
if ( low[v] >= dfn[u] ) {
++ snode;
do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v );
tre.link ( u, snode );
}
} else chkmin ( low[u], dfn[v] );
}
} inline void solve ( const int u, const int fa ) {
if ( u <= n ) {
f[u][0] = 0, f[u][1] = 1;
adj ( tre, u, v ) if ( v ^ fa ) {
solve ( v, u );
f[u][0] += f[v][1], f[u][1] += f[v][0];
}
chkmax ( f[u][1], f[u][0] );
} else {
static int tmp[MAXN + 5][2];
for ( int v: tre.vec[u] ) if ( v ^ fa ) solve ( v, u );
tmp[0][0] = tmp[0][1] = f[tre.vec[u][0]][0];
for ( int i = 1; i ^ tre.vec[u].size (); ++ i ) {
tmp[i][0] = tmp[i - 1][1] + f[tre.vec[u][i]][0];
tmp[i][1] = tmp[i - 1][0] + f[tre.vec[u][i]][1];
chkmax ( tmp[i][1], tmp[i][0] );
}
f[u][0] = tmp[tre.vec[u].size () - 1][0];
tmp[0][0] = f[tre.vec[u][0]][0], tmp[0][1] = f[tre.vec[u][0]][1];
for ( int i = 1; i ^ tre.vec[u].size (); ++ i ) {
tmp[i][0] = tmp[i - 1][1] + f[tre.vec[u][i]][0];
tmp[i][1] = tmp[i - 1][0] + f[tre.vec[u][i]][1];
chkmax ( tmp[i][1], tmp[i][0] );
}
f[u][1] = tmp[tre.vec[u].size () - 1][1];
}
} int main () {
n = snode = rint (), m = rint ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
src.add ( u, v );
}
Tarjan ( 1, 0 );
solve ( 1, 0 );
printf ( "%d\n", f[1][1] );
return 0;
}

Solution -「BZOJ 4316」小C的独立集的更多相关文章

  1. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  2. 「BZOJ 3280」小R的烦恼

    题目链接 戳我 \(Solution\) 这道题很像餐巾计划啊. 首先将每天拆成\(x\)和\(x'\),\(S->x\)流量为\(a_i\),费用为\(0\)表示一天下来有\(a_i\)个濒死 ...

  3. Solution -「BZOJ #3786」星系探索

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...

  4. Solution -「BZOJ 3331」压力

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \ ...

  5. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  6. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  7. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  8. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  9. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

随机推荐

  1. 在 CentOS 7 上安装和配置 Puppet

    1 准备 2台 centos7 (master/server:192.168.1.103 agent/client:192.168.1.106) 分别添加puppet自定义仓库 https://yum ...

  2. springboot插件打包跳过单元测试

    只需在pom.xml添加如下即可 <skipTests>true</skipTests> pom文件如下 <?xml version="1.0" en ...

  3. vue 前进刷新后退不刷新

    这边是router-view部门的写法: <keep-alive> <router-view v-if="$route.meta.keepAlive"/> ...

  4. vue使用npm安装sass

    npm install --save-dev sass-loader style-loader css-loader npm install --save-dev extract-text-webpa ...

  5. Linux内核模块学习

    注:本文是<Linux设备驱动开发详解:基于最新的Linux 4.0内核 by 宋宝华 >一书学习的笔记,大部分内容为书籍中的内容. 书籍可直接在微信读书中查看:Linux设备驱动开发详解 ...

  6. 02-JS中的数据类型及类型转换

    02-JS中的数据类型及类型转换 一.数据类型 JS中的值,无论是字面量还是变量,都有明确的类型. (一)概述 1.基本类型5种 number 数字类型 string 字符串类型 boolean 布尔 ...

  7. JuiceFS v1.0.0 Beta1 发布,加强数据安全能力

    在 JuiceFS 开源一周年之际,我们迎来了首个里程碑版本 JuiceFS v1.0.0 Beta1,并将开源许可从 AGPL v3 修改为 Apache License 2.0. JuiceFS ...

  8. Tomcat部署启动时发生错误

    Tomcat启动后项目地址显示404:源服务器未能找到目标资源的表示或者是不愿公开一个已经存在的资源表示. 严重: ContainerBase.addChild: start: org.apache. ...

  9. 雷柏鼠标vt350Q配对

    vt350q 闲鱼捡了个垃圾vt350q,23元,无接收器,不知道好坏 鼠标线 拿到手插上线没法用,后来用了罗技anywhere2s的线可以,原来usb鼠标线是五根. 鼠标毛病 使用后发现滚轮有时候乱 ...

  10. MySQL数据库索引介绍

    一.什么是索引 索引是mysql数据库中的一种数据结构,就是一种数据的组织方式,这种数据结构又称为key 表中的一行行数据按照索引规定的结构组织成了一种树型结构,该树叫B+树 二.为何要用索引 优化查 ...