题解

首先对 \(a\) 离散化,则可推出转移方程

\[dp_{i,j}=\max\{{dp_{{i^{'}},{j^{'}}}+|i-i^{'}|+|j-j^{'}|}\}+b_{i,j} \;\;(a_{i,j}=a_{{i^{'}},{j^{'}}}+1)
\]

其中按离散化后 \(a\) 递增 \(1\) 跳,一定为最优(易证)

这个方程复杂度为 \(\mathcal O(n^2m^2)\),优化:

此题可以发现每个 \(dp_{i,j}\) 都可以由 左上,右上,左下,右下 转移过来。所以用数组维护一下最大值:

\[(1,1)−(i,j):dp_{i,j}−i−j
\]
\[(1,j)−(i,m):dp_{i,j}−i+j
\]
\[(i,1)−(n,j):dp_{i,j}+i−j
\]
\[(i,j)−(n,m):dp_{i,j}+i+j
\]

贴张学长的图

现在证明一下为什么不用判断一个点在另一个点的位置就可以转移

证明:

设贡献点为 \(t_1\),被转移点为 \(t_2\)

若 \(t_1\) 在 \(t_2\) 左上方,从右下方转移,则 \(dp_{t_{2}}=dp_{t_{1}}-i-j-i'-j'\) ,但若从左上方转移 \(dp_{t_{2}}=dp_{t_{1}}+i+j-i'-j'\)

显然第一种不合法转移会被更优的且合法的第二种转移覆盖,其它情况同理

证毕

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define node(x,y,a,b) (node){x,y,a,b}
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
typedef long long ll;
static const int N=2e3+7;
int a[N][N],b[N][N],wk[N*N],p[N*N],cnt,n,m;
ll dp[N*N],pre[4],mx[4];
struct node{int x,y,a,b;}pnt[N*N];
inline int cmp(int x,int y) {return pnt[x].a<pnt[y].a;}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(m);
for (ri i(1);i<=n;p(i)) for (ri j(1);j<=m;p(j)) read(a[i][j]);
for (ri i(1);i<=n;p(i))
for (ri j(1);j<=m;p(j)) {
read(b[i][j]);
if (a[i][j]) p[p(cnt)]=cnt,pnt[cnt]=node(i,j,a[i][j],b[i][j]);
}
sort(p+1,p+cnt+1,cmp);
ri cut=INT_MAX;
dp[1]=pnt[p[1]].b;
mx[0]=cmax(mx[0],dp[1]+pnt[p[1]].x+pnt[p[1]].y);
mx[1]=cmax(mx[1],dp[1]-pnt[p[1]].x+pnt[p[1]].y);
mx[2]=cmax(mx[2],dp[1]+pnt[p[1]].x-pnt[p[1]].y);
mx[3]=cmax(mx[3],dp[1]-pnt[p[1]].x-pnt[p[1]].y);
for (ri i(2);i<=cnt;p(i)) {
ri x=p[i],y=p[i-1];
if (pnt[x].a!=pnt[y].a) {cut=i;break;}
dp[i]=pnt[x].b;
mx[0]=cmax(mx[0],dp[i]+pnt[x].x+pnt[x].y);
mx[1]=cmax(mx[1],dp[i]-pnt[x].x+pnt[x].y);
mx[2]=cmax(mx[2],dp[i]+pnt[x].x-pnt[x].y);
mx[3]=cmax(mx[3],dp[i]-pnt[x].x-pnt[x].y);
}
for (ri i(cut);i<=cnt;p(i)) {
ri x=p[i],y=p[i-1];
if (pnt[x].a!=pnt[y].a) {
pre[0]=mx[0],pre[1]=mx[1],pre[2]=mx[2],pre[3]=mx[3];
mx[0]=mx[1]=mx[2]=mx[3]=0;
}
x=pnt[x].x,y=pnt[p[i]].y;
dp[i]=cmax(pre[0]-x-y,cmax(pre[1]+x-y,cmax(pre[2]-x+y,pre[3]+x+y)))+(ll)pnt[p[i]].b;
mx[0]=cmax(mx[0],dp[i]+x+y);
mx[1]=cmax(mx[1],dp[i]-x+y);
mx[2]=cmax(mx[2],dp[i]+x-y);
mx[3]=cmax(mx[3],dp[i]-x-y);
}
register ll ans=0;
for (ri i(1);i<=cnt;p(i)) ans=cmax(ans,dp[i]);
printf("%lld\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}

不要忘记开 \(long\;\;long\)

NOIP 模拟 $11\; \rm biology$的更多相关文章

  1. NOIP 模拟 $11\; \rm english$

    题解 本题有一定代码难度 对于需要区间最大值,可以反过来考虑,先预处理出每个数所能扩展的最大边界,也就是说,求出一个最大的区间,其最大值为这个数,单调栈 \(\mathcal O(n)\) 求解 那么 ...

  2. NOIP 模拟 $11\;\rm math$

    题解 签到题(然而还是不会) 考虑所有可能的值一定是 \(\in [0,k)\),且一定为 \(gcd(a_1,a_2,...a_n,k)\) 的倍数. 证明: 设 \(tmp=b_1a_1+b_2a ...

  3. 8.1 NOIP模拟11

    8.1 NOIP模拟 11 今天上午返校之后,颓了一会,然后下午就开始考试,中午睡着了,然后刚开始考试的时候就困的一匹,我一看T1,woc,这不是之前线段树专题的题啊,和那道题差不多,所以我..... ...

  4. 6.11考试总结(NOIP模拟7)

    背景 时间分配与得分成反比,T1 20min 73pts,T2 1h 30pts,T3 2h 15pts(没有更新tot值,本来应该是40pts的,算是本次考试中最遗憾的地方了吧),改起来就是T3比较 ...

  5. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  6. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  7. NOIP 模拟 $24\; \rm matrix$

    题解 \(by\;zj\varphi\) 发现 \(\rm n,m\) 都很小,考虑分行状压. 但是上一行和下一行的按钮状态会对当前行造成影响,所以再枚举一个上一行的按钮状态. 因为对于两行,只有如下 ...

  8. NOIP 模拟 $20\; \rm y$

    题解 \(by\;zj\varphi\) 首先发现一共最多只有 \(2^d\) 种道路,那么可以状压,(不要 \(dfs\),会搜索过多无用的状态) 那么设 \(f_{i,j,k}\) 为走 \(i\ ...

  9. noip第11课作业

    1.    数字比较 定义一个函数check(n,d),让它返回一个布尔值,如果数字d在正整数n的某位中出现则返回true,否则返回false. 例如:check(325719,3)==true:ch ...

随机推荐

  1. hdu 2092 整数解(一元二次方程解)

    题目: 思路: 1.两个整数的和和积容易联想到一元二次方程的两个根,只要证明有两个解,并都是整数就打印出Yes,否则打印出No 2.最后判断那步,为什么只需要判断一个整数存在就够了,因为和是整数,一个 ...

  2. IDA,IDA PRO 产品介绍

    IDA理念这是我们在开发产品时竭尽全力遵循的理念--在此过程中,我们相信我们将开发出能够为您带来所需的可靠性.便利性和易用性的软件.没有什么能打败人脑因为我们知道一秒钟的洞察力仍然胜过百年的处理时间, ...

  3. 咋滴,不就是面试总考Spring的AOP吗,办它!

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 为什么,你的代码总是糊到猪圈上? 怎么办,知道你在互联网,不知道你在哪个大厂.知道你 ...

  4. EF Core3.1 CodeFirst动态自动添加表和字段的描述信息

    前言 我又来啦.. 本篇主要记录如何针对CodeFirst做自动添加描述的扩展 为什么要用这个呢.. 因为EF Core3.1 CodeFirst 对于自动添加描述这块 只有少部分的数据库支持.. 然 ...

  5. Selenium启动Firefox示例(java版)

    本文示例使用selenium启动Firefox,并将浏览器窗口最大化,在百度搜索框内输入"HelloWorld",最后点击搜索按钮. 源代码如下: 1 package com.se ...

  6. python pil 图像加工处理

    from PIL import Imagefrom PIL import ImageEnhanceim=Image.open("d://aa.jpg","r") ...

  7. [刘阳Java]_Spring AOP注解详细介绍_第8讲

    这节内容非常关键,我们会比较详细地介绍Spring AOP注解的使用 1. 要使用Spring AOP注解,必须满足如下的事项 导入Aspectj的jar.Spring3.0-AOP.jar.aopa ...

  8. YARN学习总结之环境搭建

    Yarn环境搭建(基于hadoop-2.6.0-cdh5.7.0 伪分布) 1)配置文件 etc/hadoop/mapred-site.xml: <configuration> <p ...

  9. 在HTML中使用JavaScript(浏览器对js的加载机制分析)

    前言: 向HTML页面中插入JavaScrip的主要方法,就是使用<script>标签.主要探讨<script>标签的在HTML页面的渲染机制.对应的业务场景:从js的加载机制 ...

  10. 如何移除本地文件夹与Git的连接

    1.在需要移除的文件夹下打开Git Bash 2.在命令行中输入如下语句 find . -name ".git" | xargs rm -Rf