Go语言核心36讲(Go语言实战与应用九)--学习笔记
31 | sync.WaitGroup和sync.Once
我们在前几次讲的互斥锁、条件变量和原子操作都是最基本重要的同步工具。在 Go 语言中,除了通道之外,它们也算是最为常用的并发安全工具了。
说到通道,不知道你想过没有,之前在一些场合下里,我们使用通道的方式看起来都似乎有些蹩脚。
比如:声明一个通道,使它的容量与我们手动启用的 goroutine 的数量相同,之后再利用这个通道,让主 goroutine 等待其他 goroutine 的运行结束。
这一步更具体地说就是:让其他的 goroutine 在运行结束之前,都向这个通道发送一个元素值,并且,让主 goroutine 在最后从这个通道中接收元素值,接收的次数需要与其他的 goroutine 的数量相同。
这就是下面的coordinateWithChan函数展示的多 goroutine 协作流程。
func coordinateWithChan() {
sign := make(chan struct{}, 2)
num := int32(0)
fmt.Printf("The number: %d [with chan struct{}]\n", num)
max := int32(10)
go addNum(&num, 1, max, func() {
sign <- struct{}{}
})
go addNum(&num, 2, max, func() {
sign <- struct{}{}
})
<-sign
<-sign
}
其中的addNum函数的声明在 demo65.go 文件中。addNum函数会把它接受的最后一个参数值作为其中的defer函数。
我手动启用的两个 goroutine 都会调用addNum函数,而它们传给该函数的最后一个参数值(也就是那个既无参数声明,也无结果声明的函数)都只会做一件事情,那就是向通道sign发送一个元素值。
看到coordinateWithChan函数中最后的那两行代码了吗?重复的两个接收表达式<-sign,是不是看起来很丑陋?
前导内容:sync包的WaitGroup类型
其实,在这种应用场景下,我们可以选用另外一个同步工具,即:sync包的WaitGroup类型。它比通道更加适合实现这种一对多的 goroutine 协作流程。
sync.WaitGroup类型(以下简称WaitGroup类型)是开箱即用的,也是并发安全的。同时,与我们前面讨论的几个同步工具一样,它一旦被真正使用就不能被复制了。
WaitGroup类型拥有三个指针方法:Add、Done和Wait。你可以想象该类型中有一个计数器,它的默认值是0。我们可以通过调用该类型值的Add方法来增加,或者减少这个计数器的值。
一般情况下,我会用这个方法来记录需要等待的 goroutine 的数量。相对应的,这个类型的Done方法,用于对其所属值中计数器的值进行减一操作。我们可以在需要等待的 goroutine 中,通过defer语句调用它。
而此类型的Wait方法的功能是,阻塞当前的 goroutine,直到其所属值中的计数器归零。如果在该方法被调用的时候,那个计数器的值就是0,那么它将不会做任何事情。
你可能已经看出来了,WaitGroup类型的值(以下简称WaitGroup值)完全可以被用来替换coordinateWithChan函数中的通道sign。下面的coordinateWithWaitGroup函数就是它的改造版本。
func coordinateWithWaitGroup() {
var wg sync.WaitGroup
wg.Add(2)
num := int32(0)
fmt.Printf("The number: %d [with sync.WaitGroup]\n", num)
max := int32(10)
go addNum(&num, 3, max, wg.Done)
go addNum(&num, 4, max, wg.Done)
wg.Wait()
}
很明显,整体代码少了好几行,而且看起来也更加简洁了。这里我先声明了一个WaitGroup类型的变量wg。然后,我调用了它的Add方法并传入了2,因为我会在后面启用两个需要等待的 goroutine。
由于wg变量的Done方法本身就是一个既无参数声明,也无结果声明的函数,所以我在go语句中调用addNum函数的时候,可以直接把该方法作为最后一个参数值传进去。
在coordinateWithWaitGroup函数的最后,我调用了wg的Wait方法。如此一来,该函数就可以等到那两个 goroutine 都运行结束之后,再结束执行了。
package main
import (
"fmt"
"sync"
"sync/atomic"
"time"
)
func main() {
coordinateWithChan()
fmt.Println()
coordinateWithWaitGroup()
}
func coordinateWithChan() {
sign := make(chan struct{}, 2)
num := int32(0)
fmt.Printf("The number: %d [with chan struct{}]\n", num)
max := int32(10)
go addNum(&num, 1, max, func() {
sign <- struct{}{}
})
go addNum(&num, 2, max, func() {
sign <- struct{}{}
})
<-sign
<-sign
}
func coordinateWithWaitGroup() {
var wg sync.WaitGroup
wg.Add(2)
num := int32(0)
fmt.Printf("The number: %d [with sync.WaitGroup]\n", num)
max := int32(10)
go addNum(&num, 3, max, wg.Done)
go addNum(&num, 4, max, wg.Done)
wg.Wait()
}
// addNum 用于原子地增加numP所指的变量的值。
func addNum(numP *int32, id, max int32, deferFunc func()) {
defer func() {
deferFunc()
}()
for i := 0; ; i++ {
currNum := atomic.LoadInt32(numP)
if currNum >= max {
break
}
newNum := currNum + 2
time.Sleep(time.Millisecond * 200)
if atomic.CompareAndSwapInt32(numP, currNum, newNum) {
fmt.Printf("The number: %d [%d-%d]\n", newNum, id, i)
} else {
fmt.Printf("The CAS operation failed. [%d-%d]\n", id, i)
}
}
}
以上就是WaitGroup类型最典型的应用场景了。不过不能止步于此,对于这个类型,我们还是有必要再深入了解一下的。我们一起看下面的问题。
问题:sync.WaitGroup类型值中计数器的值可以小于0吗?
这里的典型回答是:不可以。
问题解析
为什么不可以呢,我们解析一下。之所以说WaitGroup值中计数器的值不能小于0,是因为这样会引发一个 panic。 不适当地调用这类值的Done方法和Add方法都会如此。别忘了,我们在调用Add方法的时候是可以传入一个负数的。
实际上,导致WaitGroup值的方法抛出 panic 的原因不只这一种。
你需要知道,在我们声明了这样一个变量之后,应该首先根据需要等待的 goroutine,或者其他事件的数量,调用它的Add方法,以使计数器的值大于0。这是确保我们能在后面正常地使用这类值的前提。
如果我们对它的Add方法的首次调用,与对它的Wait方法的调用是同时发起的,比如,在同时启用的两个 goroutine 中,分别调用这两个方法,那么就有可能会让这里的Add方法抛出一个 panic。
这种情况不太容易复现,也正因为如此,我们更应该予以重视。所以,虽然WaitGroup值本身并不需要初始化,但是尽早地增加其计数器的值,还是非常有必要的。
另外,你可能已经知道,WaitGroup值是可以被复用的,但需要保证其计数周期的完整性。这里的计数周期指的是这样一个过程:该值中的计数器值由0变为了某个正整数,而后又经过一系列的变化,最终由某个正整数又变回了0。
也就是说,只要计数器的值始于0又归为0,就可以被视为一个计数周期。在一个此类值的生命周期中,它可以经历任意多个计数周期。但是,只有在它走完当前的计数周期之后,才能够开始下一个计数周期。
(sync.WaitGroup 的计数周期)
因此,也可以说,如果一个此类值的Wait方法在它的某个计数周期中被调用,那么就会立即阻塞当前的 goroutine,直至这个计数周期完成。在这种情况下,该值的下一个计数周期,必须要等到这个Wait方法执行结束之后,才能够开始。
如果在一个此类值的Wait方法被执行期间,跨越了两个计数周期,那么就会引发一个 panic。
例如,在当前的 goroutine 因调用此类值的Wait方法,而被阻塞的时候,另一个 goroutine 调用了该值的Done方法,并使其计数器的值变为了0。
这会唤醒当前的 goroutine,并使它试图继续执行Wait方法中其余的代码。但在这时,又有一个 goroutine 调用了它的Add方法,并让其计数器的值又从0变为了某个正整数。此时,这里的Wait方法就会立即抛出一个 panic。
纵观上述会引发 panic 的后两种情况,我们可以总结出这样一条关于WaitGroup值的使用禁忌,即:不要把增加其计数器值的操作和调用其Wait方法的代码,放在不同的 goroutine 中执行。换句话说,要杜绝对同一个WaitGroup值的两种操作的并发执行。
除了第一种情况外,我们通常需要反复地实验,才能够让WaitGroup值的方法抛出 panic。再次强调,虽然这不是每次都发生,但是在长期运行的程序中,这种情况发生的概率还是不小的,我们必须要重视它们。
如果你对复现这些异常情况感兴趣,那么可以参看sync代码包中的 waitgroup_test.go 文件。其中的名称以TestWaitGroupMisuse为前缀的测试函数,很好地展示了这些异常情况的发生条件。你可以模仿这些测试函数自己写一些测试代码,执行一下试试看。
知识扩展
问题:sync.Once类型值的Do方法是怎么保证只执行参数函数一次的?
与sync.WaitGroup类型一样,sync.Once类型(以下简称Once类型)也属于结构体类型,同样也是开箱即用和并发安全的。由于这个类型中包含了一个sync.Mutex类型的字段,所以,复制该类型的值也会导致功能的失效。
Once类型的Do方法只接受一个参数,这个参数的类型必须是func(),即:无参数声明和结果声明的函数。
该方法的功能并不是对每一种参数函数都只执行一次,而是只执行“首次被调用时传入的”那个函数,并且之后不会再执行任何参数函数。
所以,如果你有多个只需要执行一次的函数,那么就应该为它们中的每一个都分配一个sync.Once类型的值(以下简称Once值)。
Once类型中还有一个名叫done的uint32类型的字段。它的作用是记录其所属值的Do方法被调用的次数。不过,该字段的值只可能是0或者1。一旦Do方法的首次调用完成,它的值就会从0变为1。
你可能会问,既然done字段的值不是0就是1,那为什么还要使用需要四个字节的uint32类型呢?
原因很简单,因为对它的操作必须是“原子”的。Do方法在一开始就会通过调用atomic.LoadUint32函数来获取该字段的值,并且一旦发现该值为1,就会直接返回。这也初步保证了“Do方法,只会执行首次被调用时传入的函数”。
不过,单凭这样一个判断的保证是不够的。因为,如果有两个 goroutine 都调用了同一个新的Once值的Do方法,并且几乎同时执行到了其中的这个条件判断代码,那么它们就都会因判断结果为false,而继续执行Do方法中剩余的代码。
在这个条件判断之后,Do方法会立即锁定其所属值中的那个sync.Mutex类型的字段m。然后,它会在临界区中再次检查done字段的值,并且仅在条件满足时,才会去调用参数函数,以及用原子操作把done的值变为1。
如果你熟悉 GoF 设计模式中的单例模式的话,那么肯定能看出来,这个Do方法的实现方式,与那个单例模式有很多相似之处。它们都会先在临界区之外,判断一次关键条件,若条件不满足则立即返回。这通常被称为 “快路径”,或者叫做“快速失败路径”。
如果条件满足,那么到了临界区中还要再对关键条件进行一次判断,这主要是为了更加严谨。这两次条件判断常被统称为(跨临界区的)“双重检查”。
由于进入临界区之前,肯定要锁定保护它的互斥锁m,显然会降低代码的执行速度,所以其中的第二次条件判断,以及后续的操作就被称为“慢路径”或者“常规路径”。
别看Do方法中的代码不多,但它却应用了一个很经典的编程范式。我们在 Go 语言及其标准库中,还能看到不少这个经典范式及它衍生版本的应用案例。
下面我再来说说这个Do方法在功能方面的两个特点。
第一个特点,由于Do方法只会在参数函数执行结束之后把done字段的值变为1,因此,如果参数函数的执行需要很长时间或者根本就不会结束(比如执行一些守护任务),那么就有可能会导致相关 goroutine 的同时阻塞。
例如,有多个 goroutine 并发地调用了同一个Once值的Do方法,并且传入的函数都会一直执行而不结束。那么,这些 goroutine 就都会因调用了这个Do方法而阻塞。因为,除了那个抢先执行了参数函数的 goroutine 之外,其他的 goroutine 都会被阻塞在锁定该Once值的互斥锁m的那行代码上。
第二个特点,Do方法在参数函数执行结束后,对done字段的赋值用的是原子操作,并且,这一操作是被挂在defer语句中的。因此,不论参数函数的执行会以怎样的方式结束,done字段的值都会变为1。
也就是说,即使这个参数函数没有执行成功(比如引发了一个 panic),我们也无法使用同一个Once值重新执行它了。所以,如果你需要为参数函数的执行设定重试机制,那么就要考虑Once值的适时替换问题。
在很多时候,我们需要依据Do方法的这两个特点来设计与之相关的流程,以避免不必要的程序阻塞和功能缺失。
package main
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
)
func main() {
// 示例1。
var counter uint32
var once sync.Once
once.Do(func() {
atomic.AddUint32(&counter, 1)
})
fmt.Printf("The counter: %d\n", counter)
once.Do(func() {
atomic.AddUint32(&counter, 2)
})
fmt.Printf("The counter: %d\n", counter)
fmt.Println()
// 示例2。
once = sync.Once{}
var wg sync.WaitGroup
wg.Add(3)
go func() {
defer wg.Done()
once.Do(func() {
for i := 0; i < 3; i++ {
fmt.Printf("Do task. [1-%d]\n", i)
time.Sleep(time.Second)
}
})
fmt.Println("Done. [1]")
}()
go func() {
defer wg.Done()
time.Sleep(time.Millisecond * 500)
once.Do(func() {
fmt.Println("Do task. [2]")
})
fmt.Println("Done. [2]")
}()
go func() {
defer wg.Done()
time.Sleep(time.Millisecond * 500)
once.Do(func() {
fmt.Println("Do task. [3]")
})
fmt.Println("Done. [3]")
}()
wg.Wait()
fmt.Println()
// 示例3。
once = sync.Once{}
wg.Add(2)
go func() {
defer wg.Done()
defer func() {
if p := recover(); p != nil {
fmt.Printf("fatal error: %v\n", p)
}
}()
once.Do(func() {
fmt.Println("Do task. [4]")
panic(errors.New("something wrong"))
//fmt.Println("Done. [4]")
})
}()
go func() {
defer wg.Done()
time.Sleep(time.Millisecond * 500)
once.Do(func() {
fmt.Println("Do task. [5]")
})
fmt.Println("Done. [5]")
}()
wg.Wait()
}
总结
sync代码包的WaitGroup类型和Once类型都是非常易用的同步工具。它们都是开箱即用和并发安全的。
利用WaitGroup值,我们可以很方便地实现一对多的 goroutine 协作流程,即:一个分发子任务的 goroutine,和多个执行子任务的 goroutine,共同来完成一个较大的任务。
在使用WaitGroup值的时候,我们一定要注意,千万不要让其中的计数器的值小于0,否则就会引发 panic。
另外,我们最好用“先统一Add,再并发Done,最后Wait”这种标准方式,来使用WaitGroup值。 尤其不要在调用Wait方法的同时,并发地通过调用Add方法去增加其计数器的值,因为这也有可能引发 panic。
Once值的使用方式比WaitGroup值更加简单,它只有一个Do方法。同一个Once值的Do方法,永远只会执行第一次被调用时传入的参数函数,不论这个函数的执行会以怎样的方式结束。
只要传入某个Do方法的参数函数没有结束执行,任何之后调用该方法的 goroutine 就都会被阻塞。只有在这个参数函数执行结束以后,那些 goroutine 才会逐一被唤醒。
Once类型使用互斥锁和原子操作实现了功能,而WaitGroup类型中只用到了原子操作。 所以可以说,它们都是更高层次的同步工具。它们都基于基本的通用工具,实现了某一种特定的功能。sync包中的其他高级同步工具,其实也都是这样的。
思考题
今天的思考题是:在使用WaitGroup值实现一对多的 goroutine 协作流程时,怎样才能让分发子任务的 goroutine 获得各个子任务的具体执行结果?
笔记源码
https://github.com/MingsonZheng/go-core-demo
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。
欢迎转载、使用、重新发布,但务必保留文章署名 郑子铭 (包含链接: http://www.cnblogs.com/MingsonZheng/ ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。
Go语言核心36讲(Go语言实战与应用九)--学习笔记的更多相关文章
- Go语言核心36讲(Go语言实战与应用二)--学习笔记
24 | 测试的基本规则和流程(下) Go 语言是一门很重视程序测试的编程语言,所以在上一篇中,我与你再三强调了程序测试的重要性,同时,也介绍了关于go test命令的基本规则和主要流程的内容.今天我 ...
- Go语言核心36讲(Go语言基础知识三)--学习笔记
03 | 库源码文件 在我的定义中,库源码文件是不能被直接运行的源码文件,它仅用于存放程序实体,这些程序实体可以被其他代码使用(只要遵从 Go 语言规范的话). 这里的"其他代码" ...
- Go语言核心36讲(Go语言实战与应用一)--学习笔记
23 | 测试的基本规则和流程 (上) 在接下来的日子里,我将带你去学习在 Go 语言编程进阶的道路上,必须掌握的附加知识,比如:Go 程序测试.程序监测,以及 Go 语言标准库中各种常用代码包的正确 ...
- Go语言核心36讲(Go语言实战与应用三)--学习笔记
25 | 更多的测试手法 在本篇文章,我会继续为你讲解更多更高级的测试方法.这会涉及testing包中更多的 API.go test命令支持的,更多标记更加复杂的测试结果,以及测试覆盖度分析等等. 前 ...
- Go语言核心36讲(Go语言实战与应用四)--学习笔记
26 | sync.Mutex与sync.RWMutex 从本篇文章开始,我们将一起探讨 Go 语言自带标准库中一些比较核心的代码包.这会涉及这些代码包的标准用法.使用禁忌.背后原理以及周边的知识. ...
- Go语言核心36讲(Go语言实战与应用十二)--学习笔记
34 | 并发安全字典sync.Map (上) 我们今天再来讲一个并发安全的高级数据结构:sync.Map.众所周知,Go 语言自带的字典类型map并不是并发安全的. 前导知识:并发安全字典诞生史 换 ...
- Go语言核心36讲(Go语言实战与应用十四)--学习笔记
36 | unicode与字符编码 在开始今天的内容之前,我先来做一个简单的总结. Go 语言经典知识总结 在数据类型方面有: 基于底层数组的切片: 用来传递数据的通道: 作为一等类型的函数: 可实现 ...
- Go语言核心36讲(Go语言实战与应用十八)--学习笔记
40 | io包中的接口和工具 (上) 我们在前几篇文章中,主要讨论了strings.Builder.strings.Reader和bytes.Buffer这三个数据类型. 知识回顾 还记得吗?当时我 ...
- Go语言核心36讲(Go语言实战与应用二十二)--学习笔记
44 | 使用os包中的API (上) 我们今天要讲的是os代码包中的 API.这个代码包可以让我们拥有操控计算机操作系统的能力. 前导内容:os 包中的 API 这个代码包提供的都是平台不相关的 A ...
- Go语言核心36讲(Go语言实战与应用二十四)--学习笔记
46 | 访问网络服务 前导内容:socket 与 IPC 人们常常会使用 Go 语言去编写网络程序(当然了,这方面也是 Go 语言最为擅长的事情).说到网络编程,我们就不得不提及 socket. s ...
随机推荐
- docker采用registry部署简易仓库
解释:registry部署简易仓库,实现免密上传拉取镜像(解决不在一个容器里,也能够实现镜像拉取成功) 1.安装启动registry服务 docker pull registry docker run ...
- 题解 [AGC017C] Snuke and Spells
题目传送门 Description 有 \(n\) 个球排在一起,每个球有颜色 \(a_i\),若当前有 \(k\) 个球,则会将所有 \(a_i=k\) 的球删掉.有 \(m\) 次查询,每次将 \ ...
- SpringCloud升级之路2020.0.x版-28.OpenFeign的生命周期-进行调用
本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 接下来,我们开始分析 OpenFeign 同步环境下的生命周期的第二部分,使用 Synch ...
- logging的基本使用
logging模块打印log的时候主要有一下几个,级别顺序:CRITICAL>ERROR>WARNING>INFO>DEBUG: 1.日志输出到file: import log ...
- UltraSoft - Alpha - Scrum Meeting 7
Date: Apr 22th, 2020. Scrum 情况汇报 进度情况 组员 负责 昨日进度 后两日任务 CookieLau PM 完成课程中心的json格式传递 完成邮箱验证机制 刘zh 前端 ...
- Noip模拟78 2021.10.16
这次时间分配还是非常合理的,但可惜的是$T4$没开$\textit{long long}$挂了$20$ 但是$Arbiter$上赏了蒟蒻$20$分,就非常不错~~~ T1 F 直接拿暴力水就可以过,数 ...
- 热身训练1 Sequence
http://acm.hdu.edu.cn/showproblem.php?pid=6 分析: 这道题,全都是1e9,所以我们很容易想到"矩阵快速幂". 假如说我们没有后面那个&q ...
- UVA-1498 Activation
UVA-1498 DP应该是肯定的,设 f [ i ] [ j ] 表示现在对中共有 i 人,Tomato在第 j 个,出现所求情况的概率,我们可以很(简单的)艰难的列出下列方程: f[i][1] = ...
- Python环境配置详细步骤以及第一个程序
打开python官网:https://www.python.org/ 在官网找与自己电脑系统匹配的版本路径 这里以python3.7.2版本为例: 下载完成后,使用管理员身份进行安装: 打开命令提 ...
- 零基础学习Linux心得总结
很多同学接触linux不多,对linux平台的开发更是一无所知. 而现在的趋势越来越表明,作为一个优秀的软件开发人员,或计算机it行业从业人员,="" 掌握linux是一种很重要的 ...